Modeling of the machining parameters in turning of Al-5052/TiC/SiC composites: a statistical modeling approach using grey relational analysis (GRA) and response surface methodology (RSM)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Venkateshwar Reddy Pathapalli ◽  
Meenakshi Reddy Reddigari ◽  
Eswara Kumar Anna ◽  
P. Srinivasa Rao ◽  
D V. Ramana Reddy

PurposeMetal matrix composites (MMC) has been a section which gives an overview of composite materials and owing to those exceptional physical and mechanical properties, particulate-reinforced aluminum MMCs have gained increasing interest in particular engineering applications. Owing to the toughness and abrasive quality of reinforcement components such as silicon carbide (SiC) and titanium carbide (TiC), such materials are categorized as difficult materials for machining. The work aims to develop the model for evaluating the machinability of the materials via the response surface technique by machining three distinct types of hybrid MMCs.Design/methodology/approachThe combined effects of three machining parameters, namely “cutting speed” (s), “feed rate” (f) and “depth of cut” (d), together with three separate composite materials, were evaluated with the help of three performance characteristics, i.e. material removal rate (MRR), cutting force (CF) and surface roughness (SR). Response surface methodology and analysis of variance (ANOVA) both were initially used for analyzing the machining parameters results.FindingsThe contours were developed to observe the combined process parameters along with their correlations. The process variables were concurrently configured using grey relational analysis (GRA) and the composite desirability methodology. Both the GRA and composite desirability approach obtained similar results.Practical implicationsThe results obtained in the present paper will be helpful for decision-makers in manufacturing industries, who work on metal cutting area especially composites, to select the suitable solution by implementing the Grey Taguchi and modeling techniques.Originality/valueThe originality of this research is to identify the suitability of process parameters combination based on the obtained research results. The optimization of machining parameters in turning of hybrid metal matrix composites is carried out with two different methods such as Grey Taguchi and composite desirability approach.

2011 ◽  
Vol 110-116 ◽  
pp. 2596-2603 ◽  
Author(s):  
L.B. Abhang ◽  
M. Hameedullah

-Optimization of multi-criteria problem is a great need of producers to produce precision parts with low costs. Many methods such as Taguchi and Response surface methodology have been employed for optimization of turning operation. However there are few researches involve the optimization of multi-response problem in turning process. The attempt of this paper is to optimize multi-performance characteristics of turning process using grey relational analysis based on factorial design with response surface methodology. The response table and response graph for each level of the machining parameters is obtained and optimal levels of turning parameters including cutting velocity, feed rate, depth of cut, tool nose radius and concentration of lubricants are found. The multiple performance characteristics including tool wear rate, cutting force and chip-tool interface temperature is considered.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
I Infanta Mary Priya ◽  
B. K. Vinayagam

This research work attempts to study the most prominent factor of the drilling operations performed on different thicknesses of biaxial glass fibre reinforced with graphene platelet nanopowder and epoxy composite using three different drills. Damages are induced in the workpieces to analyse the effect of changed cutting parameters and different tool materials for varied thicknesses of the plates during the drilling process. The resultant drilled hole exhibited surface irregularities that are measured using SURFCOM 1400G. The circularity deviations of the holes are measured using a coordinate measuring machine. Image-processing technique is used to calculate the area of maximum diameter of the damaged zone. Using these data, delamination at entry and exit is calculated. Utilizing response surface methodology and grey relational analysis, the varied operations are carried out and analysed with different tool materials for common cutting parameters. It is found that the lesser thickness workpiece with selected HSS drill under high speed and low feed rate is the best variable option.


Author(s):  
Bikash Choudhuri ◽  
Ruma Sen ◽  
Subrata Kumar Ghosh ◽  
Subhash Chandra Saha

Wire electric discharge machining is a non-conventional machining wherein the quality and cost of machining are influenced by the process parameters. This investigation focuses on finding the optimal level of process parameters, which is for better surface finish, material removal rate and lower wire consumption for machining stainless steel-316 using the grey–fuzzy algorithm. Grey relational technique is applied to find the grey coefficient of each performance, and fuzzy evaluates the multiple performance characteristics index according to the grey relational coefficient of each response. Response surface methodology and the analysis of variance were used for modelling and analysis of responses to predict and find the influence of machining parameters and their proportion of contribution on the individual and overall responses. The measured values from confirmation experiments were compared with the predicted values, which indicate that the proposed models can be effectively used to predict the responses in the wire electrical discharge machining of AISI stainless steel-316. It is found that servo gap set voltage is the most influential factor for this particular steel followed by pulse off time, pulse on time and wire feed rate.


Sign in / Sign up

Export Citation Format

Share Document