Optimisation of hardness and tensile strength of friction stir welded AA6061 alloy using response surface methodology coupled with grey relational analysis and principle component analysis

2016 ◽  
Vol 7 (4) ◽  
pp. 21 ◽  
Author(s):  
BR Sankar ◽  
P Umamaheswarrao
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
I Infanta Mary Priya ◽  
B. K. Vinayagam

This research work attempts to study the most prominent factor of the drilling operations performed on different thicknesses of biaxial glass fibre reinforced with graphene platelet nanopowder and epoxy composite using three different drills. Damages are induced in the workpieces to analyse the effect of changed cutting parameters and different tool materials for varied thicknesses of the plates during the drilling process. The resultant drilled hole exhibited surface irregularities that are measured using SURFCOM 1400G. The circularity deviations of the holes are measured using a coordinate measuring machine. Image-processing technique is used to calculate the area of maximum diameter of the damaged zone. Using these data, delamination at entry and exit is calculated. Utilizing response surface methodology and grey relational analysis, the varied operations are carried out and analysed with different tool materials for common cutting parameters. It is found that the lesser thickness workpiece with selected HSS drill under high speed and low feed rate is the best variable option.


Author(s):  
M.A. Unnikrishnan ◽  
J. Edwin Raja Dhas

In this paper, the Taguchi method and grey relational analysis have been used to evaluate the weldability of AZ91B Magnesium alloy by friction stir welding process. Experiments were conducted using the L9 Taguchi design considering an orthogonal array consist of 3 factors and 3 levels. The rotational speed, transverse speed and angle of tilt of the tool are selected as welding parameters. Analysis of variance (ANOVA) is used to analyze the influence of the welding parameters on the responses namely, ultimate tensile strength (UTS) and hardness. The analysis results revealed that the transverse speed is the predominant parameter affecting tensile strength, hardness and quality of the weld. Confirmation test results showed that the Taguchi method coupled with grey relational analysis is very successful in the optimization of welding parameters for maximum strength and hardness in the FSW of AZ91B Magnesium alloy.


Author(s):  
A Palanisamy ◽  
N Jeyaprakash ◽  
V Sivabharathi ◽  
S Sivasankaran

Incoloy 800H is an austenitic Fe-Ni-Cr based superalloy and used in many applications due to their high corrosion resistance and creep-strength. However, this alloy is difficult to machine or cut material because of their eminent characteristics such as rapid-work hardening, lesser thermal conductivity and easy to tool-material attraction. Hence, the necessary experimental investigation is required to study and optimize the turning parameters of this alloy. This work presents the investigation of turning parameter effects on the Incoloy 800H superalloy with cryogenically treated cutting tool. The dry turning experiments were conducted based on Taguchi L9 Orthogonal array (OA) with the input parameters of cutting speed, feed rate and depth of cut. The outputs such as material removal rate, surface roughness, cutting force and tool-tip temperature were considered as the responses. The measured output responses were optimized and modeled using Taguchi-based Grey relational analysis (GRA) and response surface methodology (RSM), respectively. The tool flank wear and tool life were examined on coated insert with cryogenically treated, coated insert (without cryogenic treatment) and uncoated insert for comparison. The results revealed that greater amount of tool-wear reduction was observed in the case of coated tool with-cryogenically treated about 47.88%, coated tool without-cryogenically treated about 27.51% when compared with an uncoated tool. Besides, analysis of variance (ANOVA) was performed to find the most significant parameter over the obtained responses. The obtained mathematical model through RSM was agreed with the experimental result. Further, the machined surface topography was examined using White Light Interferometer (WLI).


2018 ◽  
Vol 15 (2) ◽  
pp. 509-520
Author(s):  
D. Raguraman ◽  
D. Muruganandam ◽  
L. A. Kumaraswamidhas

Friction stir welding of dissimilar materials is investigated experimentally in this work and optimization is performed by applying a hybrid Taguchi-Grey relational analysis-Principal component analysis to maximize the tensile strength and hardness of the weld bead. Two dissimilar metals AA6061 and AZ61 is friction stir welded and considered for the experimentation. Experimental matrix is designed using Taguchi's Design of Experiment (DOE). Optimum inputs rotational speed, axial load and transverse speed is obtained by applying the hybrid optimization technique. Statistical analysis of Multi Response Performance Index (MRPI) through Analysis of Variance (ANOVA) shows that axial load is the significant parameter that contributes by 75.67% towards MRPI, followed by transverse speed and rotational speed. Confirmation experiment with optimum condition produces a better friction stir welding joint with higher tensile strength and hardness.


Sign in / Sign up

Export Citation Format

Share Document