Machining performance of 3D-printed ABS electrode coated with copper in EDM

2019 ◽  
Vol 25 (7) ◽  
pp. 1224-1231 ◽  
Author(s):  
Ujwal A. Danade ◽  
Shrikant D. Londhe ◽  
Rajesh M. Metkar

Purpose Rapid tooling (RT) technique using rapid prototyping (RP) process has been looked upon as an approach which reduces time and cost of production. This study aims to produce electrode for electrical discharge machining (EDM) from acrylonitrile butadiene styrene (ABS) material using the fused deposition modeling (FDM) process of RP. The electrode is coated with copper to a depth of 1 mm by using electroplating to make it conductive. This electrode is termed as RP electrode. The performance of RP electrode having square shape is compared with that of solid electrode of copper having identical size. Design/methodology/approach In this study, the work piece material is chosen to be titanium Grade-V alloy (Ti-Al6-V4). The input parameters on the EDM machine such as discharge current, pulse on time and voltage are studied, and experiments are designed using the Taguchi method. Findings The results pertaining to the material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra) are reported. It is found that the performance of a coated RP electrode is equally satisfactory when compared with that of a solid electrode. Originality/value This paper reports the machining performance of a square-shaped ABS electrode coated with copper. This technique, particularly when the electrode is of intricate shape, saves on cost and time of production of electrode to be used for EDM.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1154 ◽  
Author(s):  
Nishant K. Singh ◽  
Anand Poras ◽  
Subrato Das

The high carbon high chromium die steel is most widely used in various industrial applications. However, effective machining of high carbon-chromium die steel is extremely difficult due to its high hardness and stiffness. In the present work, comparative analysis of Gas Assisted Hybrid EDM (GAHEDM), Rotary EDM (REDM), and Conventional EDM processes have been done with respect to process responses like electrode wear ratio (EWR), material removal rate (MRR), and surface roughness (SR). Experimentation has been done to the study influence of process factors like discharge current, pulse on time, duty cycle, tool rotation and discharge gas pressure on MRR, EWR and SR. Further, from a comparative study, it has been observed that high MRR, low EWR and low SR are obtained in GAHEDM process in comparison of REDM and EDM processes. Analysis of surface morphology reveals that the formation of recast layer and cracks on the surface are fewer in number on work piece machined by GAHEDM process with respect to specimen machined with REDM and EDM processes. The results show that the use of compressed helium gas in GHEDM process has a positive impact on the machining performance. This process may be used for industrial machining operation.  


Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


2019 ◽  
Vol 72 (3) ◽  
pp. 291-297
Author(s):  
Jibin T. Philip ◽  
Deepak Kumar ◽  
S.N. Joshi ◽  
Jose Mathew ◽  
Basil Kuriachen

Purpose Electrical discharge machining (EDM) is well-known for its credibility in the processing of advanced materials, which are electrically conductive. The strenuous effort associated with machining of Ti6Al4V (Ti64) using conventional methods, and its low tribological behavior, present an immediate need to develop solutions to monitor and improve the compatible techniques such as EDM. Design/methodology/approach The present work includes following: monitoring the ED process parameters, namely, current (I) and pulse on time (Ton), in controlling the material removal rate and surface roughness (Ra and Sa) for development of tribo-adaptive surfaces; and investigation on the role of oxides pertinent to the tribo-behavior of Ti64 (bare and EDMed) surfaces. Findings The tribological behavior of Ti6Al4V surfaces got remarkably improved through ED machining, which points to the credibility of the process to establish itself as a surface alloying technique. The recast layer (RL, alloyed matrix) acted as a protective coating; stable enough to assist the developed tribo-oxides such as TiO and Ti8O15 in rendering improved sliding performance at load = 50 N and speed = 0.838 ms−1. Originality/value The surface modification through ED machining was experimentally proven to improve the wear behavior of Ti6Al4V surfaces.


2020 ◽  
Vol 998 ◽  
pp. 55-60
Author(s):  
Jurapun Phimoolchat ◽  
Apiwat Muttamara

This paper focused on Grey relational analysis (GRA) to optimize EDM parameters through multi-objective optimization for Al2024 aluminum and electrode graphite ISO-63 was used as a cutting tool. The process parameters pulse on time, duty factor, pulse current and open voltage. Performance characteristics examined included material removal rate (MRR), electrode wear ratio (EWR) and surface roughness (SR). Taguchi’s 27 experimental designs, often called an orthogonal array (OA), was utilized to ignore interaction and concentrate on main effect estimation. GRA was performed to optimize input parameters levels. Results were that MRR increased from 35.00 to 35.11 mm3/min, EWR decreased from 11.63 to 10.89 mm3/min, and SR decreased from 5.01 to 4.97 μm. Taguchi and GRA resulted in clear improvements in MRR, EWR, and SR.


2014 ◽  
Vol 592-594 ◽  
pp. 479-483 ◽  
Author(s):  
Hemant Walkar ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Electric discharge machining (EDM) is a non-conventional machining process in which material removal take place by a series of electric spark generated between the small gap of both electrode and both immersed in dielectric medium. The gap conditions of EDM significntly affect the stability of machining process. Thus, the machining performance would be improved by removing the debris from the machining gap fastly. In view of this, the objective of present work was to investigate the effect of magnetic field on the material removal rate (MRR) and surface roughness (SR), in conjunction with the variation of electrical parameters like pulse on-off times and gap current, while keeping other electrical parameters and work piece/ tool material constant. Experimental results showed that the magnetic field assisted EDM improves the process stability. Moreover, the EDM process with high efficiency and quality of machined parts could fulfill the requirements of modern manufacturing industries.


2019 ◽  
Vol 14 (2) ◽  
pp. 430-455 ◽  
Author(s):  
Shankar Chakraborty ◽  
Prasenjit Chatterjee ◽  
Partha Protim Das

PurposeTo meet the requirements of high-dimensional accuracy and surface finish of various advanced engineering materials for generating intricate part geometries, non-traditional machining (NTM) processes have now become quite popular in manufacturing industries. To explore the fullest machining capability of these NTM processes, it is often required to operate them while setting their different controllable parameters at optimal levels. This paper aims to present a novel approach for selection of the optimal parametric mixes for different NTM processes in order to assist the concerned process engineers.Design/methodology/approachIn this paper, design of experiments (DoE) and technique for order preference by similarity to ideal solution (TOPSIS) are combined to develop the corresponding meta-models for identifying the optimal parametric combinations of two NTM processes, i.e. electrical discharge machining (EDM) and wire electrical discharge machining (WEDM) processes with respect to the computed TOPSIS scores.FindingsFor EDM operation on Inconel 718 alloy, lower settings of open circuit voltage and pulse-on time and higher settings of peak current, duty factor and flushing pressure will simultaneously optimize all the six responses. On the other hand, for the WEDM process, the best machining performance can be expected to occur at a parametric combination of zinc-coated wire, lower settings of pulse-on time, wire feed rate and sensitivity and intermediate setting of pulse-off time.Practical implicationsAs the development of these meta-models is based on the analysis of the experimental data, they are expected to be more practical, being immune to the introduction of additional parameters in the analysis. It is also observed that the derived optimal parametric settings would provide better values of the considered responses as compared to those already determined by past researchers.Originality/valueThis DoE–TOPSIS method-based approach can be applied to varieties of NTM as well as conventional machining processes to determine the optimal parametric combinations for having their improved machining performance.


2015 ◽  
Vol 761 ◽  
pp. 303-307 ◽  
Author(s):  
Laily Suraya ◽  
M.A. Ali ◽  
N.I.S. Hussein ◽  
Mohd Razali Muhamad ◽  
Manshoor Bukhari ◽  
...  

The effect of machining parameters on machining characteristics for aluminium alloy LM6 (Al-Sil2) in Electrical Discharge Machining (EDM) die-sinking is studied. The objective of this project is to determine the relationship between the machining parameters including pulse-on time, pulse-off time, peak current and voltage with the machining characterictics such as Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (Ra). Copper materials having diameter 15mm was chosen as the electrode tool. Design of experimenent using Taguchi technique was employed to design experimental matrix that was used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that current and pulse off time significantly affect MRR, EWR and Ra while pulse on time and voltage are less significant in their effect on machining responses. Results show that using Taguchi as a design matrix, the best setting of optimum value for machining parameters to find the required machining responses can be obtained.


2009 ◽  
Vol 83-86 ◽  
pp. 672-679 ◽  
Author(s):  
Suleiman Abdulkareem ◽  
Ahsan Ali Khan ◽  
Mohamed Konneh

In electrical discharge machining (EDM), material is removed by a series of electrical discharge between the electrode (tool) and the workpiece that develops a temperature of about 8,0000C to 12,0000C. Due to high temperature of the sparks, work material is melted and vapourized, at the same time the electrode material is also eroded by melting and vapourization. Electrodes wear (EW) process is quite similar to the material removal mechanism as the electrode and the workpiece are considered as a set of electrode in EDM. In the present study effort has been made to reduce EW by cooling, using liquid nitrogen during the EDM of titanium alloy. Investigation on the effect of cooling on electrode wear (EW), material removal rate (MRR) and surface roughness (Ra) of the workpiece was carried out. Current (I), pulse on-time (ton), pause off-time (toff) and voltage (v) were considered as the machining parameters. Design of experiment (DOE) was used to design the experimental works. Cooling of electrode by this technique reduced the melting and vapourization of electrode material and enhances electrode life. It was possible to reduce EW up to 27% by applying this technique while MRR and Ra were improved by 18% and 8% respectively.


Sign in / Sign up

Export Citation Format

Share Document