Expanding the applicability of FDM-type technologies through materials development

2015 ◽  
Vol 21 (2) ◽  
pp. 137-143 ◽  
Author(s):  
David Roberson ◽  
Corey M Shemelya ◽  
Eric MacDonald ◽  
Ryan Wicker

Purpose – The purpose of this paper is to demonstrate the strategy for increasing the applicability of material extrusion additive manufacturing (AM) technologies, based on fused deposition modeling (FDM), through the development of materials with targeted physical properties. Here, the authors demonstrate materials specifically developed for the manufacture of electromechanical and electromagnetic applications, the use of FDM-type processes in austere environments and the application of material extrusion AM. Design/methodology/approach – Using a twin screw polymeric extrusion process, novel polymer matrix composites and blends were created where the base material was a material commonly used in FDM-type processes, namely, acrylonitrile butadiene styrene (ABS) or polycarbonate (PC). Findings – The work presented here demonstrates that, through targeted materials development, the applicability of AM platforms based on FDM technology can be increased. Here, the authors demonstrate that that the physical properties of ABS and PC can be manipulated to be used in several applications such as electromagnetic and X-ray shielding. Other instances of the development of new materials for FDM led to mitigation of problems associated with the process such as surface finish and mechanical property anisotropy based on build orientation. Originality/value – This paper is an overview of a research effort dedicated to increasing the amount of material systems available to material extrusion AM. Here materials development is shown to not only increase the number of suitable applications for FDM-type processes, but to be a pathway toward solving inherent problems associated with FDM such as surface finish and build orientation-caused mechanical property anisotropy.

2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


2017 ◽  
Vol 23 (6) ◽  
pp. 1226-1236 ◽  
Author(s):  
Ashu Garg ◽  
Anirban Bhattacharya ◽  
Ajay Batish

Purpose The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations. Design/methodology/approach Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts. Findings The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy. Originality/value The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.


2012 ◽  
Vol 556 ◽  
pp. 194-210 ◽  
Author(s):  
P.K.C. Venkatsurya ◽  
Z. Jia ◽  
R.D.K. Misra ◽  
M.D. Mulholland ◽  
M. Manohar ◽  
...  

1985 ◽  
Vol 17 (7) ◽  
pp. 958-962
Author(s):  
V. F. Berdikov ◽  
O. I. Pashkarev ◽  
V. V. Gavrichenko

2011 ◽  
Vol 702-703 ◽  
pp. 303-306
Author(s):  
Chandan Mondal ◽  
Ashok Kumar Singh ◽  
A.K. Mukhopadhyay ◽  
K. Chattopadhyay

Mechanical property anisotropy in terms of in-plane anisotropy (AIP) of yield strength, and work hardening behavior of a heat treated 7010 aluminum alloy sheet has been investigated. The specimens were given two different types of heat treatments that result in a unique single rotated Brass-{110}á556ñ component with different texture intensity and volume fraction of recrystallization. It has been observed that the AIPincreases with increase in texture intensity and volume fraction of recrystallization. The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features namely, grain morphology and precipitation. On the other hand, work hardening behavior appears to be significantly affected by the microstructural features rather than type of texture present in the samples.


Sign in / Sign up

Export Citation Format

Share Document