Robotic inspection of ship hull surfaces using a magnetic crawler and a monocular camera

Sensor Review ◽  
2017 ◽  
Vol 37 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Annalisa Milella ◽  
Rosalia Maglietta ◽  
Massimo Caccia ◽  
Gabriele Bruzzone

Purpose Periodic inspection of large tonnage vessels is critical to assess integrity and prevent structural failures that could have catastrophic consequences for people and the environment. Currently, inspection operations are undertaken by human surveyors, often in extreme conditions. This paper aims to present an innovative system for the automatic visual inspection of ship hull surfaces, using a magnetic autonomous robotic crawler (MARC) equipped with a low-cost monocular camera. Design/methodology/approach MARC is provided with magnetic tracks that make it able to climb along the vertical walls of a vessel while acquiring close-up images of the traversed surfaces. A homography-based structure-from-motion algorithm is developed to build a mosaic image and also produce a metric representation of the inspected areas. To overcome low resolution and perspective distortion problems in far field due to the tilted and low camera position, a “near to far” strategy is implemented, which incrementally generates an overhead view of the surface, as long as it is traversed by the robot. Findings This paper demonstrates the use of an innovative robotic inspection system for automatic visual inspection of vessels. It presents and validates through experimental tests a mosaicking strategy to build a global view of the structure under inspection. The use of the mosaic image as input to an automatic corrosion detector is also demonstrated. Practical implications This paper may help to automate the inspection process, making it feasible to collect images from places otherwise difficult or impossible to reach for humans and automatically detect defects, such as corroded areas. Originality/value This paper provides a useful step towards the development of a new technology for automatic visual inspection of large tonnage ships.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lukman E. Mansuri ◽  
D.A. Patel

PurposeHeritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.Design/methodology/approachThe artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”FindingsThis study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.Practical implicationsThe study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.Originality/valueFor ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vivian Suzano Medeiros ◽  
Alan Conci Kubrusly ◽  
Raphael Lydia Bertoche ◽  
Miguel Andrade Freitas ◽  
Claudio Camerini ◽  
...  

Purpose The inspection of flexible risers is a critical activity to ensure continuous productivity and safety in oil and gas production. The purpose of this paper is to present the design and development of a novel automatic underwater tool for riser inspection that fits the most commonly used riser diameters and significantly improves inspection quality and reduces its operating costs. Design/methodology/approach The mechanical and electronic design of the inspection system is discussed, as well as its embedded sensors and control system. The tool is equipped with a suspension system that is able to adapt to the riser diameter and negotiate obstacles on the pipe wall. Numerical simulations were carried out to analyze the mechanical design, and a hardware-in-the-loop simulation was developed for tuning the control system. Further, experimental results are presented and discussed. Findings Experimental tests in laboratory tanks and shallow seawater have confirmed the effectiveness of the tool for detailed real-time inspection of underwater pipelines. Practical implications The use of the proposed tool will potentially reduce the time and costs for riser inspection, currently performed by divers or high-cost ROVs. Originality/value The authors present a reliable tool able to perform automatic inspections up to 250 m deep in less than 30 min, equipped with a high-definition visual inspection system, composed of full-HD cameras and lasers and a suspension mechanism that can negotiate sharp obstacles in the pipe wall up to 25 mm high. The tool uses a comprehensive control system that autonomously performs a full inspection, collecting sensors data and returning safely to the surface. Its robust design can be used as basis for several other nondestructive techniques, such as ultrasound and X-ray.


1988 ◽  
Author(s):  
Hiroyuki Tsukahara ◽  
Masato Nakashima ◽  
Takefumi Inagaki

Subject Outlook for the global patent system. Significance Innovation and the diffusion of new technology contribute to GDP growth and consumer welfare. Intellectual property rights such as patents are designed to promote innovation by rewarding inventors with a right of exclusion that prevents others from making, selling or using their invention for a fixed period of time, unless they pay a licence fee. Patent registration is increasing rapidly both within advanced and emerging countries, as the latter learn about its value. However, there is a conflict between rewarding innovators with monopoly rights and promoting the diffusion of knowledge at low cost. As more products and techniques are protected by patents, there is concern that the system is inhibiting rather than promoting growth. Impacts The US patent system supports innovation, while the EU system is less clearly defined with unitary patent protection. Licensing will need to be easily obtained at reasonable prices with terms conducive to both technological and business model exploration. Governments and supranational authorities will need to ensure that patent pools can operate within sympathetic but fair antitrust regimes. Regulatory authorities will need to ensure that patent pools cannot become tools for collusive activity by leading technology firms. Firms will need to monitor constantly legislation and judgments relating to their industry in countries in which they operate.


Author(s):  
Haojie Zhang ◽  
Bo Su ◽  
Hong Meng

Purpose With the dramatically increasing number of substations, robots are expected to inspect equipment in the power industry. However, a traditional robotic system cannot work stably because of the strong electromagnetic field in substation. The purpose of this paper is to present a robust and stable robotic system for inspecting the substation equipment without the involvement of workers. Design/methodology/approach The paper presents in detail a robotic system that consists of a monitor center and a robot. With the monitor center, the workers could send inspection tasks and monitor status of the robot timely. Once a fault is detected, the alarm message will flash immediately to remind the workers. The patrol mode of the robot comprises teleoperation, regular inspection, special inspection and a key return mode. The robot only relies on a low-cost magnetic sensor for lateral positioning and radio frequency identification technology for longitudinal positioning when working under patrol mode. At each stop point, the substation equipment can be recognized quickly through accurate matching with the template image stored in the database. Findings It is shown that the robot could work efficiently and reliably in power substations. The positioning error is proved to be within 5 mm, compared to that of 20 cm by implementing integrated global positioning system-dead reckoning navigation. Because of the high positioning accuracy, it is much easier to recognize the substation equipment. It is observed that nearly 99 per cent of equipments can be recognized. Research limitations/implications The proposed robotic system is tested in a simple substation environment. While the proposed system shows satisfactory positioning results, further studies considering changeable weather condition will focus on improving the equipment recognition rate in such environment, such as rainy, snowy and strong sunlight. Practical implications The key contribution of this paper is that it provides a robotic system to inspect substation equipment instead of workers, to improve working efficiency and to reduce manpower cost. Originality/value This paper presents a robotic system to inspect substation equipment instead of workers. Four patrol modes are designed to meet the inspection demand. Comparing with the previous robotic systems, this system contributes to higher position accuracy and higher equipment recognition rate.


2022 ◽  
Vol 88 (1) ◽  
pp. 57-65
Author(s):  
Kimiya AOKI ◽  
Kazuki YAMAMOTO ◽  
Yusuke TAKEUCHI ◽  
Yuma HAKUMURA ◽  
Takeshi ITO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document