Development and implementation of a robotic inspection system for power substations

Author(s):  
Haojie Zhang ◽  
Bo Su ◽  
Hong Meng

Purpose With the dramatically increasing number of substations, robots are expected to inspect equipment in the power industry. However, a traditional robotic system cannot work stably because of the strong electromagnetic field in substation. The purpose of this paper is to present a robust and stable robotic system for inspecting the substation equipment without the involvement of workers. Design/methodology/approach The paper presents in detail a robotic system that consists of a monitor center and a robot. With the monitor center, the workers could send inspection tasks and monitor status of the robot timely. Once a fault is detected, the alarm message will flash immediately to remind the workers. The patrol mode of the robot comprises teleoperation, regular inspection, special inspection and a key return mode. The robot only relies on a low-cost magnetic sensor for lateral positioning and radio frequency identification technology for longitudinal positioning when working under patrol mode. At each stop point, the substation equipment can be recognized quickly through accurate matching with the template image stored in the database. Findings It is shown that the robot could work efficiently and reliably in power substations. The positioning error is proved to be within 5 mm, compared to that of 20 cm by implementing integrated global positioning system-dead reckoning navigation. Because of the high positioning accuracy, it is much easier to recognize the substation equipment. It is observed that nearly 99 per cent of equipments can be recognized. Research limitations/implications The proposed robotic system is tested in a simple substation environment. While the proposed system shows satisfactory positioning results, further studies considering changeable weather condition will focus on improving the equipment recognition rate in such environment, such as rainy, snowy and strong sunlight. Practical implications The key contribution of this paper is that it provides a robotic system to inspect substation equipment instead of workers, to improve working efficiency and to reduce manpower cost. Originality/value This paper presents a robotic system to inspect substation equipment instead of workers. Four patrol modes are designed to meet the inspection demand. Comparing with the previous robotic systems, this system contributes to higher position accuracy and higher equipment recognition rate.

Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


Sensor Review ◽  
2017 ◽  
Vol 37 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Annalisa Milella ◽  
Rosalia Maglietta ◽  
Massimo Caccia ◽  
Gabriele Bruzzone

Purpose Periodic inspection of large tonnage vessels is critical to assess integrity and prevent structural failures that could have catastrophic consequences for people and the environment. Currently, inspection operations are undertaken by human surveyors, often in extreme conditions. This paper aims to present an innovative system for the automatic visual inspection of ship hull surfaces, using a magnetic autonomous robotic crawler (MARC) equipped with a low-cost monocular camera. Design/methodology/approach MARC is provided with magnetic tracks that make it able to climb along the vertical walls of a vessel while acquiring close-up images of the traversed surfaces. A homography-based structure-from-motion algorithm is developed to build a mosaic image and also produce a metric representation of the inspected areas. To overcome low resolution and perspective distortion problems in far field due to the tilted and low camera position, a “near to far” strategy is implemented, which incrementally generates an overhead view of the surface, as long as it is traversed by the robot. Findings This paper demonstrates the use of an innovative robotic inspection system for automatic visual inspection of vessels. It presents and validates through experimental tests a mosaicking strategy to build a global view of the structure under inspection. The use of the mosaic image as input to an automatic corrosion detector is also demonstrated. Practical implications This paper may help to automate the inspection process, making it feasible to collect images from places otherwise difficult or impossible to reach for humans and automatically detect defects, such as corroded areas. Originality/value This paper provides a useful step towards the development of a new technology for automatic visual inspection of large tonnage ships.


Author(s):  
Aisha Aseeri ◽  
Omaimah Bamasag

Purpose In the past few years, HB-like protocols have gained much attention in the field of lightweight authentication protocols due to their efficient functioning and large potential applications in low-cost radio frequency identification tags, which are on the other side spreading so fast. However, most published HB protocols are vulnerable to man-in-the-middle attacks such as GRS or OOV attacks. The purpose of this research is to investigate security issues pertaining to HB-like protocols with an aim of improving their security and efficiency. Design/methodology/approach In this paper, a new and secure variant of HB family protocols named HB-MP* is proposed and designed, using the techniques of random rotation. The security of the proposed protocol is proven using formal proofs. Also, a prototype of the protocol is implemented to check its applicability, test the security in implementation and to compare its performance with the most related protocol. Findings The HB-MP* protocol is found secure against passive and active adversaries and is implementable within the tight resource constraints of today’s EPC-type RFID tags. Accordingly, the HB-MP* protocol provides higher security than previous HB-like protocols without sacrificing performance. Originality/value This paper proposes a new HB variant called HB-MP* that tries to be immune against the pre-mentioned attacks and at the same time keeping the simple structure. It will use only lightweight operations to randomize the rotation of the secret.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ammar Mohamed Aamer ◽  
Chelinka Rafiesta Sahara

Purpose Creating a real-time data integration when developing an internet-of-things (IoT)-based warehouse is still faced with challenges. It involves a diverse knowledge of novel technology and skills. This study aims to identify the critical components of the real-time data integration processes in IoT-based warehousing. Then, design and apply a data integration framework, adopting the IoT concept to enable real-time data transfer and sharing. Design/methodology/approach The study used a pilot experiment to verify the data integration system configuration. Radio-frequency identification (RFID) technology was selected to support the integration process in this study, as it is one of the most recognized products of IoT. Findings The experimentations’ results proved that data integration plays a significant role in structuring a combination of assorted data on the IoT-based warehouse from various locations in a real-time manner. This study concluded that real-time data integration processes in IoT-based warehousing could be generated into three significant components: configuration, databasing and transmission. Research limitations/implications While the framework in this research was carried out in one of the developing counties, this study’s findings could be used as a foundation for future research in a smart warehouse, IoT and related topics. The study provides guidelines for practitioners to design a low-cost IoT-based smart warehouse system to obtain more accurate and timely data to support the quick decision-making process. Originality/value The research at hand provides the groundwork for researchers to explore the proposed theoretical framework and develop it further to increase inventory management efficiency of warehouse operations. Besides, this study offers an economical alternate for an organization to implement the integration software reasonably.


2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110248
Author(s):  
Miaoyu Li ◽  
Zhuohan Jiang ◽  
Yutong Liu ◽  
Shuheng Chen ◽  
Marcin Wozniak ◽  
...  

Physical health diseases caused by wrong sitting postures are becoming increasingly serious and widespread, especially for sedentary students and workers. Existing video-based approaches and sensor-based approaches can achieve high accuracy, while they have limitations like breaching privacy and relying on specific sensor devices. In this work, we propose Sitsen, a non-contact wireless-based sitting posture recognition system, just using radio frequency signals alone, which neither compromises the privacy nor requires using various specific sensors. We demonstrate that Sitsen can successfully recognize five habitual sitting postures with just one lightweight and low-cost radio frequency identification tag. The intuition is that different postures induce different phase variations. Due to the received phase readings are corrupted by the environmental noise and hardware imperfection, we employ series of signal processing schemes to obtain clean phase readings. Using the sliding window approach to extract effective features of the measured phase sequences and employing an appropriate machine learning algorithm, Sitsen can achieve robust and high performance. Extensive experiments are conducted in an office with 10 volunteers. The result shows that our system can recognize different sitting postures with an average accuracy of 97.02%.


Author(s):  
P.M.B. Torres ◽  
P. J. S. Gonçalves ◽  
J.M.M. Martins

Purpose – The purpose of this paper is to present a robotic motion compensation system, using ultrasound images, to assist orthopedic surgery. The robotic system can compensate for femur movements during bone drilling procedures. Although it may have other applications, the system was thought to be used in hip resurfacing (HR) prosthesis surgery to implant the initial guide tool. The system requires no fiducial markers implanted in the patient, by using only non-invasive ultrasound images. Design/methodology/approach – The femur location in the operating room is obtained by processing ultrasound (USA) and computer tomography (CT) images, obtained, respectively, in the intra-operative and pre-operative scenarios. During surgery, the bone position and orientation is obtained by registration of USA and CT three-dimensional (3D) point clouds, using an optical measurement system and also passive markers attached to the USA probe and to the drill. The system description, image processing, calibration procedures and results with simulated and real experiments are presented and described to illustrate the system in operation. Findings – The robotic system can compensate for femur movements, during bone drilling procedures. In most experiments, the update was always validated, with errors of 2 mm/4°. Originality/value – The navigation system is based entirely on the information extracted from images obtained from CT pre-operatively and USA intra-operatively. Contrary to current surgical systems, it does not use any type of implant in the bone to track the femur movements.


2017 ◽  
Vol 23 (2) ◽  
pp. 448-466 ◽  
Author(s):  
Afrooz Moatari-Kazerouni ◽  
Ygal Bendavid

Purpose Since mid-2000s, hospitals have begun implementing radio-frequency identification (RFID) technology in order to improve their operations. The purpose of this paper is to explore the potential of RFID technology in improving the traceability of surgical instruments in a hospital environment. Design/methodology/approach A case study is conducted at a teaching hospital in Montreal, Canada. Business process reengineering approach and simulation techniques are used to assess the realistic potential of the RFID technology. The application of different scenarios and how they influence the efficiency of process flow between the central sterilization department and operating rooms of the hospital is investigated. Findings Research outcomes demonstrated how tagging individual instruments or their sets lead to reduction of the time spent in re-processing the soiled instrument as well as the reduction of costs related to staff. Furthermore, specific key performance indicators are identified and eventual issues related to implementation of the re-designed processes are discussed. Originality/value Implementing RFID-enabled solutions in hospital context is still an emerging phenomenon that involves various stakeholders in a change management project. While implementing RFID technology can benefit hospitals by improving business processes and workflows, the adoption is still slow, especially for managing surgical instruments. It is, hence, crucial to compare the advantages and drawbacks of RFID-enabled surgical instruments solutions with other well-established traceability technologies such as barcoding.


2012 ◽  
Vol 2 (8) ◽  
pp. 1-9
Author(s):  
Saroj Koul

Subject area Operations and human resourcing. Study level/applicability This case study is intended for use in graduate, executive level management and doctoral programs. The case study illustrates a combined IT and HR driven participative management control system in a flexible organization structure. It is intended for a class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Case overview The case describes the situation of managing unskilled workforces (≥14,000 workers) during the construction phase of the 4 × 250MW power plants both for purposes of turnout as well as due compensation, in the event of an accident. The approved labour forces appointed for 45 × 8 h. Man-days after a rigorous fitness test and approvals of the safety officer are allocated housing and other necessary amenities and a commensurate compensation system. Expected learning outcomes These include: illustrating typical organizational responsibility structure at a construction site of a large power plant; illustrating the planning and administrative control mechanism in implementing strategy at a construction site of a large power plant; offering students the opportunity to understand and view a typical operational (project) structure; allowing students to speculate adaptations in the wake of an ever-changing business and company environment; and providing an opportunity to introduce a power scenario in India, Indian labour laws and radio frequency identification technology and to relate this to the case in context. Supplementary materials Teaching notes are available; please consult your librarian for access.


Sign in / Sign up

Export Citation Format

Share Document