Investigation of treated PEN foil surface properties for inkjet application

2015 ◽  
Vol 27 (3) ◽  
pp. 108-111
Author(s):  
Aneta Araźna ◽  
Konrad Futera ◽  
Małgorzata Jakubowska ◽  
Łucja Dybowska-Sarapuk

Purpose – The purpose of this paper is to report surface properties of treated Teonex Du Pont polyethylene naphthalate (PEN) foil substrates. Design/methodology/approach – There were three different cleaning treatments among other: argon glow discharge, dipping into alkaline solution at 60°C as well as washing in an ultrasonic bath of acetone and ethyl alcohol in room temperature. The relation between PEN foil morphology and surface properties has been studied by contact angle measurements as well as evaluation of surface roughness of PEN foil samples by atomic force microscopy (AFM). Findings – It was found that argon glow discharge (T3) of PEN treatment caused the maximum reduction in both values of contact angles. In addition, the argon glow discharge yielded the highest PEN surface energy (51.9 mJ/m2) and polarity (0.89). On the other hand, the AFM micrographs showed that the samples T3 had the highest value of average and root mean square surface roughness. Based on the experiments results, the authors stated that the alkaline cleaning (T2 treatment) could be considered as an effective method of PEN substrate treatment. Originality/value – The influence of different cleaning treatment on the surface properties of PEN foil to inkjet application was analyzed. In the literature, there are not a lot of papers describing examinations of surface properties of PEN foil to inkjet application by contact angle measurements and AFM analysis.

1977 ◽  
Vol 30 (1) ◽  
pp. 205 ◽  
Author(s):  
IW Wark

A technique used in flotation research for contact angle measurements is recommended for wider use. The effect of one aspect of surface roughness on the relative motion of fluid/solid systems is discussed. The function of the water vapour present in the gas phase adjacent to the line of triple contact is examined. A claim of the Russian school of surface chemists is questioned, namely, that a discrete film of water on the solid surface invariably dominates both hysteresis and contact angle.


2016 ◽  
Vol 69 (4) ◽  
pp. 431 ◽  
Author(s):  
Ten It Wong ◽  
Hao Wang ◽  
Fuke Wang ◽  
Sau Leng Sin ◽  
Cheng Gen Quan ◽  
...  

In contact angle measurements, direct identification of the contact angles from images taken from a goniometer suffers from errors caused by optical scatterings. Contact angles can be more accurately identified by the height and width of the droplet. Spherical dome is a simple model used to correlate the contact angles to the droplet shape; however, it features intrinsic errors caused by gravity-induced shape deformation. This paper demonstrates a simple method of obtaining an empirical formula, determined from experiments, to correct the gravity-induced error in the spherical dome model for contact angle calculations. A series of contact angles, heights, and surface contact widths are simultaneously collected for a large amount of samples, and the contact angles are also calculated using the spherical dome model. The experimental data are compared with those obtained from the spherical dome model to acquire an empirical formula for contact angles. Compared with the spherical dome model, the empirical formula can reduce the average errors of the contact angle from –16.3 % to 0.18 %. Furthermore, the same method can be used to correct the gravity errors in the spherical dome for the volume (calculated by height and width), height (calculated by contact angle and volume), and width (calculated by contact angle and volume), and the spherical dome errors can be reduced from –20.9 %, 24.6 %, and –4.8 % to 2 %, –0.13 %, and –0.6 %, respectively. Our method is generic and applicable for all kinds of solvent and substrates, and the derived empirical formulae can be directly used for water droplets on any substrate.


2016 ◽  
Vol 7 (6) ◽  
pp. 703-711 ◽  
Author(s):  
Dimitris K. Perivoliotis ◽  
Malamatenia A. Koklioti ◽  
Elias P. Koumoulos ◽  
Yiannis S. Raptis ◽  
Costas A. Charitidis

Purpose Carbon nanotube-based architectures have increased the scientific interest owning to their exceptional performance rendering them promising candidates for advanced industrial applications in the nanotechnology field. Despite individual CNTs being considered as one of the most known strong materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical performance. The paper aims to discuss these issues. Design/methodology/approach In this work, thermal CVD method is employed to produce VA-MWCNT carpets. Their structural properties were studied by means of SEM, XRD and Raman spectroscopy, while their hydrophobic behavior was investigated via contact angle measurements. The resistance to indentation deformation of VA-MWCNT carpets was investigated through nanoindentation technique. Findings The synthesized VA-MWCNTs carpets consisted of well-aligned MWCNTs. Static contact angle measurements were performed with water and glycerol, revealing a rather super-hydrophobic behavior. Originality/value The structural analysis, hydrophobic behavior and indentation response of VA-MWCNTs carpets synthesized via CVD method are clearly demonstrated.


2011 ◽  
Vol 8 (11) ◽  
pp. 998-1002 ◽  
Author(s):  
Antonia Terriza ◽  
Rafael Alvarez ◽  
Francisco Yubero ◽  
Ana Borras ◽  
Agustin R. González-Elipe

1999 ◽  
Vol 217 (1) ◽  
pp. 94-106 ◽  
Author(s):  
Maria Helena Ventura Cabral Adão ◽  
Benilde Jesus Vieira Saramago ◽  
Anabela Catarino Fernandes

2018 ◽  
Author(s):  
M. Elsharafi ◽  
K. Vidal ◽  
R. Thomas

Contact angle measurements are important to determine surface and interfacial tension between solids and fluids. A ‘water-wet’ condition on the rock face is necessary in order to extract oil. In this research, the objectives are to determine the wettability (water-wet or oil-wet), analyze how different brine concentrations will affect the wettability, and study the effect of the temperature on the dynamic contact angle measurements. This will be carried out by using the Cahn Dynamic Contact Angle. Analyzer DCA 315 to measure the contact angle between different fluids such as surfactant, alkaline, and mineral oil. This instrument is also used to measure the surface properties such as surface tension, contact angle, and interfacial tension of solid and liquid samples by using the Wilhelmy technique. The work used different surfactant and oil mixed with different alkaline concentrations. Varying alkaline concentrations from 20ml to 1ml were used, whilst keeping the surfactant concentration constant at 50ml.. It was observed that contact angle measurements and surface tension increase with increased alkaline concentrations. Therefore, we can deduce that they are directly proportional. We noticed that changing certain values on the software affected our results. It was found that after calculating the density and inputting it into the CAHN software, more accurate readings for the surface tension were obtained. We anticipate that the surfactant and alkaline can change the surface tension of the solid surface. In our research, surfactant is desirable as it maintains a high surface tension even when alkaline percentage is increased.


Author(s):  
Matthew A. Trapuzzano ◽  
Rasim Guldiken ◽  
Andrés Tejada-Martínez ◽  
Nathan B. Crane

Many important processes depend on the wetting of liquids on surfaces. Wetting is commonly controlled through material selection, coatings, and/or surface texture, however these means are sensitive to environmental conditions. Some “hydrophobic” fluoropolymer coatings are sensitive to extended water exposure as evidenced by declining contact angles and increasing contact angle hysteresis. Understanding degradation of these coatings is critical to processes that employ them. To accomplish this, contact angle measurements were taken before, during, and after slides coated with FluoroSyl 3750 or Cytop were submerged in water, or vibrated while covered in water. Both methods demonstrated similar changes in advancing contact angle though vibration increased degradation rates significantly. However, it does not simply accelerate the process as different trends are apparent in receding contact angles. The FluoroSyl 3750 showed no clear degradation under either condition. Surface profilometry did not detect any surface morphology differences that might cause contact angle change.


Sign in / Sign up

Export Citation Format

Share Document