Emulsified nano Al2O3 – Jatropha methyl ester blends: application in variable compression ratio engine

2020 ◽  
Vol 17 (5) ◽  
pp. 733-737
Author(s):  
Chiranjeeva Rao Seela ◽  
Ravi Sankar B.

Purpose The purpose of this paper is to assess the influence of blends of Jatropha methyl ester (JME) and its nano Al2O3 emulsion on variable compression ratio diesel engine. The oxygen in alumina contributed for the smooth burning and resulted in improved performance and emissions. Design/Methodology/Approach The biodiesel (methyl ester) is prepared from the raw Jatropha oil. The B10, B20 and B30 blends of and their nanoemulsions are prepared with the 25, 50, 75 and 100 ppm of nano Al2O3. The prepared JME blends and its nanoemulsions are tested in a variable compression ratio (VCR) diesel engine to evaluate the engine performance and emission characteristics. Findings The nanoemulsion B20 + 50 ppm has given maximum brake thermal efficiency (BTE), and with the increased proportion of nanoparticle, the BTE was reduced. Also, the specific fuel consumption is lowest (0.2826 kg/kWh) for B20 + 50 ppm at the compression ratio 16.5 and full load which is 4.10% lower than the diesel and 5.8% lower than the B20 blend. As the load increases, NOx emission increases owing to higher peak temperatures in the combustion chamber. The JME-nano Al2O3 emulsion reduces the HC and CO emission compared with all other fuels. Originality/Value Novel nano emulsions are prepared, characterized and tested on VCR engine.

2010 ◽  
Vol 7 (2) ◽  
pp. 399-406 ◽  
Author(s):  
M. Venkatraman ◽  
G. Devaradjane

In the present investigation, tests were carried out to determine engine performance, combustion and emissions of a naturally aspirated direct injection diesel engine fueled with diesel and Jatropha Methyl ester and their blends (JME10, JME20 and JME30). Comparison of performance and emission was done for different values of compression ratio, injection pressure and injection timing to find best possible combination for operating engine with JME. It is found that the combined compression ratio of 19:1, injection pressure of 240 bar and injection timing of 27?bTDC increases the BTHE and reduces BSFC while having lower emissions.From the investigation, it is concluded that the both performance and emissions can considerably improved for Methyl ester of jatropha oil blended fuel JME20 compared to diesel.


Author(s):  
K.Satya narayana ◽  
◽  
Vinodh Kumar Padala ◽  
T.V.Hanumantha Rao ◽  
S.V.Umamahe swararao

Author(s):  
T J Rychter ◽  
A Teodorczyk ◽  
C R Stone ◽  
H J Leonard ◽  
N Ladommatos ◽  
...  

A variable compression ratio concept that can give a different expansion ratio to the compression ratio has been evaluated by means of a simulation of a turbocharged diesel engine. The compression ratio is controlled by varying the ratio of the connecting rod length to the crank throw, hence the name variable crank radius/connecting rod length engine (VR/LE). The VR/LE mechanism kinematics have been defined and described, and the compression ratio and expansion ratio have been presented as a function of the eccentric phase angle (αo). A zero-dimensional engine simulation that has been the subject of comprehensive validation has been used as the basis of the VR/LE study. The effect of the compression ratio on the engine performance at fixed loads is presented. The principal benefits are a reduction in fuel consumption at part load of about 2 per cent and a reduction in ignition delay that leads to an estimated 6 dB reduction in combustion noise. The study has been conducted within the assumption of a maximum cylinder pressure of 160 bar.


This present study investigates the performance and emission characteristics different injection pressure on variable compression ratio of a diesel engineusing cyanobacteria (greenalgae).In the Diesel Engine the experiments were controlled withvarious hole injection to study the effect onemission and performance by using conventional diesel future emission regulation will require substantial reductions of NOX and CO2 emissions from diesel engines. With cyanobacteria (green algae) as a biodiesel and diesel blends are prepared to use as fuel on variable compression ratio diesel engine.


2018 ◽  
Vol 15 (2) ◽  
pp. 183-191
Author(s):  
Ganesh S. Warkhade ◽  
A. Veeresh Babu

Purpose The purpose of this study is to get much insight about the combustion and emission characteristics of partially processed high free fatty acid linseed oil, i.e. esterified linseed oil (ELO), and diesel fuel in a single-cylinder compression ignition engine. Design/methodology/approach The variable compression ratio (CR) diesel engine (3.5 kW) of CR ranging from 12:1 to 18:1 is used for the experimentation purpose. In this study, CR varied from 16:1 to 18:1 for investigating the combustion and emissions characteristics of ELO. Various features such as combustion pressure, net heat release rate and mean gas temperature are analysed. The emission characteristics such as hydrocarbon, carbon monoxide, carbon dioxide and nitrogen dioxide are investigated with different loads and CRs. The effect of an ambient temperature condition is also reported. Findings Results from this investigation reveal that the burning of ELO is found to be advanced for all CRs as compared to diesel fuel, whereas these features were found to be lower for a CR of 17. Emissions of ELO are found to be higher at all loads and CRs. Overall, this study provides a necessary framework to enhance further research in this area. Originality/value This investigation shows that ELO has better combustion in the first phase of combustion. However, the exhaust emissions of ELO have higher value due to improper combustion in the second and subsequent phase of combustion due to higher viscosity.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Srinivas Kommana ◽  
Balu Naik Banoth ◽  
Kalyani Radha Kadavakollu

Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05), PKE10 (palm kernel oil 90 + eucalyptus 10), and PKE15 (palm kernel 85 + eucalyptus 15). The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.


Sign in / Sign up

Export Citation Format

Share Document