Discriminating formation and accumulation processes of some strategic metals in Fe-Mn deposits of the Atlantic Ocean

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maksim Blokhin ◽  
Natalia Zarubina ◽  
Pavel Mikhailik ◽  
Evgeniy Elovskiy ◽  
Yulia Ivanova ◽  
...  

Purpose This study aims to present the results of inductively coupled plasma mass spectrometry (ICP-MS) determination of economically significant metals including rare-earth elements and Y (REY), Co + Ni + Cu obtained from the Fe-Mn deposits (FMD) of different areas selected along the Atlantic Ocean. Design/methodology/approach The description of the instrumental part of the analysis was shown in detail, including the choice of the acquisition mode and other settings of the quadrupole ICP-MS Agilent 7700x, which allow to eliminate spectral overlaps as much as possible and to achieve good precision and accuracy of the measurement. The accuracy of the obtained results was controlled by analysis of certified reference materials (CRM) of Fe-Mn nodules of the US Geological Survey – NOD-A-1 and NOD-P-1, as well as the Russian CRM samples of Fe-Mn nodule OOPE 603 (SDO-6) and ore crust OOPE 604 (SDO-7). Statistical processing of the analysis results demonstrated the acceptability of chosen sample preparation technique and ICP-MS tunes for the determination of REY in FMD. Findings The performed analytical research allowed giving a geochemical characteristic of studied FMD. The precision for the elements to be determined according to the relative standard deviation (RSD) was within 5.0%. Originality/value To move away from the subjective visual assessment of the analytical results quality in terms of absence (or presence) of the REE sawtooth distribution, an original objective mathematical method was proposed.

2008 ◽  
Vol 91 (6) ◽  
pp. 1397-1401 ◽  
Author(s):  
Daniel Hammer ◽  
Daniel Andrey

Abstract The performances of 2 official methods for iodine analysis based on inductively coupled plasma-mass spectrometry (ICP-MS) and the ion-selective electrode (ISE) method were compared for milk-based products. The aim of the study was to determine the performance characteristics of both methods to check the labeled concentration of iodine. Good precision was found for both methods with highest relative standard deviation of repeatability (RSDr) at 2.3 and 2.7 for ISE and ICP-MS, respectively. Intermediate reproducibility (RSDiR), single laboratory within 6 different days, was also good with the highest values at 7.3 and 8 by ISE and ICP-MS, respectively. Measurement uncertainty was estimated based on the RSDiR data, and it was concluded that both methods were capable of determining iodine concentrations within an uncertainty below 20. The accuracy of the methods was determined by analyzing certified reference materials, in-house proficiency test samples, and commercial products. Both methods returned similar results when applied on freshly opened samples. In samples that had been opened and kept exposed to air during storage, ISE returned lower iodine concentrations than ICP-MS. In commercial samples, the linear regression between both methods was ISE 0.95 ICP-MS 0.060 for freshly opened samples and ISE 0.85 ICP-MS 0.069 for samples exposed to air. The tendency of ISE to return lower results than ICP-MS is explained by the fact that ISE is sensitive to iodide but does not measure iodine that may be bound organically to the matrix. This seems to be more pronounced in samples that were stored longer. Because in most countries iodine is labeled as total iodine, acceptance of an international standard based on the ICP-MS technique which takes all forms of iodine into account, is recommended. This would help to avoid any potential dispute on the accuracy of labeled iodine concentrations in finished products.


2019 ◽  
Vol 85 (4) ◽  
pp. 110-113
Author(s):  
Olexandr Ponomarenko ◽  
Anatolyi Samchuk ◽  
Kateryna Vovk ◽  
Igor Shvaika ◽  
Ganna Grodzinskaya

The analytical technologies of sample preparation of rocks and mushrooms using the microwave field for the determination of germanium by the method of mass spectrometry with inductively coupled plasma (ICP-MS analysis) have been developed. Germanium is a rare element. Germanium is homology of silicon and carbon. To date, the definition of low content of germanium in geological objects is a rather complex analytical task, which requires its concentration - extraction, co-precipitation, ion exchange. At present, the harmonious combination of the method of natural objects decomposition in the microwave field and germanium determination using ICP-MS analysis is particularly promising. Sample preparation of silicate rocks for ICP-MS determination of germanium was carried out by decomposition in a mixture of hydrofluoric, phosphate and nitric acids (5: 5: 2) in a microwave oven program at 240°C for 30 min. Sample preparation of mushrooms for ICP-MS germanium determination was carried out according to the following scheme. Initially, the dried sample was sealed in the presence of CaO, after dissolving it in a mixture of HNO3+HF+H3PO4 (6:6:1). Ge solution was extracted by Nazarenko V.A. extraction method. The developed analytical schemes have made it possible to significantly reduce the duration and labor intensity of sample preparation. The obtained solutions were analyzed using an inductively coupled plasma mass spectrometer. The developed method for determining germanium by ICP-MS analysis has been successfully tested on standard rock samples. The obtained results are in accordance with the accepted attribute, the relative standard deviation Sr ranges from 0.7-0.9. The data on the content and distribution of germanium in the Boletales fungi are obtained. They indicate wild mushrooms contain high levels of germanium, especially Boletus and Mushroom biospores. These studies are necessary because the essential properties of germanium and its compounds attract special attention of scientists today. Complementary Ge compounds which have hypotensive, bactericidal, antiviral and antitumor effects have already been synthesized.


2007 ◽  
Vol 90 (3) ◽  
pp. 844-856 ◽  
Author(s):  
Kaare Julshamn ◽  
Amund Maage ◽  
Hilde Skaar Norli ◽  
Karl H Grobecker ◽  
Lars Jorhem ◽  
...  

Abstract Thirteen laboratories participated in an interlaboratory method performance (collaborative) study on a method for the determination of arsenic, cadmium, mercury, and lead by inductively coupled plasma/mass spectrometry (ICP/MS) after pressure digestion including the microwave heating technique. Prior to the study, the laboratories were able to practice on samples with defined element levels (pretrial test). The method was tested on a total of 7 foodstuffs: carrot puree, fish muscle, mushroom, graham flour, simulated diet, scampi, and mussel powder. The elemental concentrations in mg/kg dry matter (dm) ranged from 0.0621.4 for As, 0.0328.3 for Cd, 0.040.6 for Hg, and 0.012.4 for Pb. The materials used in the study were presented to the participants as blind duplicates, and the participants were asked to perform single determinations on each sample. The repeatability relative standard deviations (RSDr) for As ranged from 3.8 to 24%, for Cd from 2.6 to 6.9%, for Hg from 4.8 to 8.3%, and for Pb from 2.9 to 27%. The reproducibility relative standard deviations (RSDR) for As ranged from 9.0 to 28%, for Cd from 2.8 to 18%, for Hg from 9.9 to 24%, and for Pb from 8.0 to 50%. The HorRat values were less than 1.5 for all test samples, except for the determination of Pb in wheat flour at a level close to the limit of quantitation (0.01 mg/kg dm). The study showed that the ICP/MS method is satisfactory as a standard method for elemental determinations in foodstuffs.


2020 ◽  
pp. 3-10
Author(s):  
A.V. Alekseev ◽  
◽  
P.V. Yakimovich ◽  
I.S. Legkodukhova ◽  
◽  
...  

In this work, the determination of low contents (less than 0,0005 wt. %) of arsenic in complex alloyed samples of nickel alloys was carried out by means of inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry with electrothermal atomization. Also, the ICP-MS method was used to determine the arsenic content in chromium, which is an alloying component of nickel alloys. A technique for dissolving a sample and preparing it for analysis is presented. Spectral interferences are eliminated by applying mathematical correction equations, a reaction-collision cell and using corrective additives. The correctness of the results obtained is confirmed by the analysis of certified reference materials of nickel alloys and chromium.


2003 ◽  
Vol 86 (6) ◽  
pp. 1225-1231 ◽  
Author(s):  
Laurent Noël ◽  
Thierry Guérin ◽  
Jean-Marc Frémy ◽  
Hélène Huet ◽  
Martine Kolf-Clauw

Abstract A rapid procedure, based on closed vessels microwave digestion and inductively coupled plasma-mass spectrometry (ICP-MS), was evaluated to ascertain the effect of chronic exposure to cadmium on intracellular accumulation of minor and essential trace elements in cultured epithelial cells (Caco-2 TC7). For all measurements, the method of external calibration was used and 3 elements (Be, Sc, In) were selected as internal standards. Optimization procedures are discussed and results are presented for the total determination of 9 key analytes (Na, Mg, Ca, Cr, Mn, Cu, Zn, Mo, and Cd) in certified reference materials (CRMs) and 20 samples of Caco-2 TC7 cells long-term exposed to Cd. The performance characteristics of the analytical system were evaluated by calibration and linearity, limits of detection and quantitation, accuracy with spiking, trueness and repeatability with available CRMs. As a complement to the ICP-MS determinations, both available CRMs and cell samples were analyzed either by electro thermal-or flame atomic absorption spectrometry. The results were in good agreement with the ICP-MS results.


1994 ◽  
Vol 77 (4) ◽  
pp. 1004-1023 ◽  
Author(s):  
J E Longbottom ◽  
T D Martin ◽  
K W Edgell ◽  
S E Long ◽  
M R Plantz ◽  
...  

Abstract A joint U.S. Environmental Protection Agency (U.S. EPA)—AOAC interlaboratory method validation study was conducted on U.S. EPA method 200.8, Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma–Mass Spectrometry. The purpose of the study was to determine and compare the mean recovery and precision of the inductively coupled plasma–mass spectrometry (ICP–MS) analyses for 20 trace elements in reagent water, drinking water, and groundwater. The formal study was based on Youden’s nonreplicate plan for collaborative tests of analytical methods. The test waters were spiked with the 20 trace elements at 6 concentration levels in the 0.8–200 μg/L range, prepared as 3 Youden pairs. Thirteen collaborators spiked 100 mL aliquots of the test waters, acidified them with 1 mL concentrated HNO3 and 0.5 mL concentrated HCl, reduced the volume to 20 mL by heating in an open beaker at 85°C, refluxed them for 30 min at 95°C, and diluted them to 50 mL. After centrifuging or settling the samples, a 20 mL portion of the supernatant was diluted to 50 mL and analyzed by ICP–MS. Related experiments evaluated the method performance in wastewater and wastewater digestate at a single concentration pair, and an alternative nitric acid digestion procedure. Mean recoveries for reagent water, drinking water, and groundwater were generally 95–105% with between-laboratory relative standard deviations about 4–8%. The method also worked well with wastewaters and digestate, with between-laboratory relative standard deviations averaging 8% and recoveries averaging 100%. Recoveries of silver, however, were low in all matrixes at concentrations over 100 μg/L. The nitric acid digestion procedure was comparable in accuracy and precision to the mixed-acid digestion in U.S. EPA method 200.8. The method was adopted first action by AOAC INTERNATIONAL.


2021 ◽  
Vol 68 (4) ◽  
pp. 913-920
Author(s):  
Lovro Sinkovič ◽  
Marijan Nečemer ◽  
Barbara Pipan ◽  
Vladimir Meglič

The current study involves two analytical research techniques, inductively coupled plasma-mass spectrometry (ICP-MS) and energy dispersive X-ray fluorescence (EDXRF) spectroscopy, used to determine the elemental composition of different legumes usually produced and consumed in Slovenia. Results indicate that data obtained using these methods are in agreement with certified reference materials. In total, nineteen elements were determined from twenty legume samples. An intercomparison between four macro- (P, S, K, Ca) and three microelements (Fe, Zn, Mo) measured using ICP-MS and EDXRF methods showed a strong correlation. The EDXRF was found to be a cheaper, simpler and more environmentally friendly method for determination of elements P, S, Cl, K, Ca, Fe, Zn, Mo, Sr, Rb, Ti and Br in legumes, while for the identification and determination of Na, Mg, V, Cr, Mn, Co and Cu content ICP‐MS was the method of choice due to its excellent sensitivity and accuracy. Using principal component analysis (PCA), the samples of the studied legumes were classified into four groups according to their elemental composition.


2021 ◽  
Vol 14 (4) ◽  
pp. 515-526
Author(s):  
Anna A. Kravchenko ◽  
◽  
Irina V. Nikolaeva ◽  
Stanislav V. Palesskiy

Method of microwave digestion using HNO3, HCl and HF in MARS‑5 system followed by ICP-MS analysis is proposed for determination of rare earth elements (REE) in plant materials. Limits of detection are 0.0001–0.001 ppm and allow for determination of all REE in certified reference materials Tr‑1, LB‑1 and EK‑1 and new reference material NSP‑1, relative standard deviations are lower than 13 %.Influence of HF addition during microwave digestion in UltraWAVE system on the ICP-MS analysis of REE in plant materials depending on silica content is studied. Necessity of HF addition during microwave digestion for better REE recoveries is shown for plant materials with Si contents exceeding 0.1 %


Separations ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 66
Author(s):  
Natalia Manousi ◽  
George A. Zachariadis

In this study, a method for the determination of trace elements in snacks using inductively coupled plasma–atomic emission spectrometry (ICP-AES) is presented. The examined elements were Pb, Ni, Cr, Cu, Mg, Zn, Fe, Al, Ba, Ca, Co, Mn and Cd. Under the optimized conditions, digestion of 300 mg of the snack samples was performed by the addition of 5 mL of nitric acid in a Teflon autoclave and by heating the obtained mixture at 120 °C for 75 min. In order to evaluate the efficiency of the proposed protocol, method linearity, accuracy precision, limits of detection (LODs) and limits of quantification (LOQs) were evaluated. The relative standard deviations (RSD%) for all elements were lower than 13.5%, demonstrating that the method offered good precision. The relative recoveries values (R%) ranged between 80–120%, demonstrating that the method offered good accuracy. The LODs for all the trace elements ranged between 0.18 and 3.75 μg g−1, while the LOQs ranged between 0.60 and 12.50 μg g−1. Finally, the proposed protocol was implemented for the analysis of a wide variety of savory snack samples including commercial snacks from corn, potato chips, popcorns, puffed rice cake and crackers.


2003 ◽  
Vol 86 (2) ◽  
pp. 439-448 ◽  
Author(s):  
Lisa Jo Melnyk ◽  
Jeffrey N Morgan ◽  
Reshan Fernando ◽  
Edo D Pellizzari ◽  
Olujide Akinbo

Abstract A study was conducted to evaluate the applicability of inductively coupled plasma-mass spectrometry (ICP-MS) techniques for determination of metals in composite diets. Aluminum, cadmium, chromium, copper, lead, manganese, nickel, vanadium, and zinc were determined by this method. Atmospheric pressure microwave digestion was used to solubilize analytes in homogenized composite diet samples, and this procedure was followed by ICP-MS analysis. Recovery of certified elements from standard reference materials ranged from 92 to 119% with relative standard deviations (RSDs) of 0.4–1.9%. Recovery of elements from fortified composite diet samples ranged from 75 to 129% with RSDs of 0–11.3%. Limits of detection ranged from 1 to 1700 ng/g; high values were due to significant amounts of certain elements naturally present in composite diets. Results of this study demonstrate that low-resolution quadrupole-based ICP-MS provides precise and accurate measurements of the elements tested in composite diet samples.


Sign in / Sign up

Export Citation Format

Share Document