Microwave measurements of effective dielectric constant of semiconductor waveguides via periodic-structure photoexcitation

1997 ◽  
Vol 46 (3) ◽  
pp. 717-721 ◽  
Author(s):  
W. Platte
Author(s):  
Aakashdeep ◽  
Saurav Kr. Basu ◽  
G. V. Ujjwal ◽  
Sakshi Kumari ◽  
V. R. Gupta

1992 ◽  
Vol 258 ◽  
Author(s):  
Z. Jing ◽  
J. L. Whitten ◽  
G. Lucovsky

ABSTRACTWe have performed ab initio calculations and determined the bond-energies and vibrational frequencies of Si-H groups that are: i) attached to Si-atoms as their immediate, and also more distant neighbors; and ii) attached to three O-atoms as their immediate neighbors, but are connected to an all Si-atom matrix. These arrangements simulate bonding geometries on Si surfaces, and the calculated frequency for i) is in good agreement with that of an Si-H group on an Si surface. To compare these results with a-Si:H alloys it is necessary to take into account an additional factor: the effective dielectric constant of the host. We show how to do this, demonstrating the way results of the ab initio calculations should then be compared with experimental data.


2014 ◽  
Vol 04 (04) ◽  
pp. 1450035 ◽  
Author(s):  
Lin Zhang ◽  
Patrick Bass ◽  
Zhi-Min Dang ◽  
Z.-Y. Cheng

The equation ε eff ∝ (ϕc - ϕ)-s which shows the relationship between effective dielectric constant (εeff) and the filler concentration (φ), is widely used to determine the percolation behavior and obtain parameters, such as percolation threshold φc and the power constant s in conductor–dielectric composites (CDCs). Six different systems of CDCs were used to check the expression by fitting experimental results. It is found that the equation can fit the experimental results at any frequency. However, it is found that the fitting constants do not reflect the real percolation behavior of the composites. It is found that the dielectric constant is strongly dependent on the frequency, which is mainly due to the fact that the frequency dependence of the dielectric constant for the composites close to φc is almost independent of the matrix.


Author(s):  
С.А. Корчагин ◽  
Д.В. Терин

A method is proposed for modeling the complex dielectric constant of an anisotropic hierarchically constructed nanocomposite with a periodic structure, based on the complex application of quantum mechanical calculations, an effective medium model, and equivalent equivalent circuits. The dielectric constant of the TiO2 - Al2O3 nanocomposite under the action of external high-frequency electromagnetic radiation has been investigated. The wavelength ranges at which resonance bursts are observed are determined. The possibility of controlling the maxima of difference losses and resonance absorption maxima by changing the geometric parameters of the nanocomposite is shown.


Sign in / Sign up

Export Citation Format

Share Document