A large-scale complex virtual environment for team training

Computer ◽  
1995 ◽  
Vol 28 (7) ◽  
pp. 49-56 ◽  
Author(s):  
T.W. Mastaglio ◽  
R. Callahan
2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Quax ◽  
Jeroen Dierckx ◽  
Bart Cornelissen ◽  
Wim Lamotte

The explosive growth of the number of applications based on networked virtual environment technology, both games and virtual communities, shows that these types of applications have become commonplace in a short period of time. However, from a research point of view, the inherent weaknesses in their architectures are quickly exposed. The Architecture for Large-Scale Virtual Interactive Communities (ALVICs) was originally developed to serve as a generic framework to deploy networked virtual environment applications on the Internet. While it has been shown to effectively scale to the numbers originally put forward, our findings have shown that, on a real-life network, such as the Internet, several drawbacks will not be overcome in the near future. It is, therefore, that we have recently started with the development of ALVIC-NG, which, while incorporating the findings from our previous research, makes several improvements on the original version, making it suitable for deployment on the Internet as it exists today.


2010 ◽  
pp. 180-193 ◽  
Author(s):  
F. Steinicke ◽  
G. Bruder ◽  
J. Jerald ◽  
H. Frenz

In recent years virtual environments (VEs) have become more and more popular and widespread due to the requirements of numerous application areas in particular in the 3D city visualization domain. Virtual reality (VR) systems, which make use of tracking technologies and stereoscopic projections of three-dimensional synthetic worlds, support better exploration of complex datasets. However, due to the limited interaction space usually provided by the range of the tracking sensors, users can explore only a portion of the virtual environment (VE). Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) such as virtual city models, while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. With redirected walking users are guided on physical paths that may differ from the paths they perceive in the virtual world. The authors have conducted experiments in order to quantify how much humans can unknowingly be redirected. In this chapter they present the results of this study and the implications for virtual locomotion user interfaces that allow users to view arbitrary real world locations, before the users actually travel there in a natural environment.


GCA 2007 ◽  
2007 ◽  
Author(s):  
LIANG ZHANG ◽  
QINGPING LIN ◽  
HOON KANG NEO ◽  
GUANGBIN HUANG ◽  
ROBERT GAY ◽  
...  

1993 ◽  
Vol 2 (4) ◽  
pp. 297-313 ◽  
Author(s):  
Martin R. Stytz ◽  
Elizabeth Block ◽  
Brian Soltz

As virtual environments grow in complexity, size, and scope users will be increasingly challenged in assessing the situation in them. This will occur because of the difficulty in determining where to focus attention and in assimilating and assessing the information as it floods in. One technique for providing this type of assistance is to provide the user with a first-person, immersive, synthetic environment observation post, an observatory, that permits unobtrusive observation of the environment without interfering with the activity in the environment. However, for large, complex synthetic environments this type of support is not sufficient because the mere portrayal of raw, unanalyzed data about the objects in the virtual space can overwhelm the user with information. To address this problem, which exists in both real and virtual environments, we are investigating the forms of situation awareness assistance needed by users of large-scale virtual environments and the ways in which a virtual environment can be used to improve situation awareness of real-world environments. A technique that we have developed is to allow a user to place analysis modules throughout the virtual environment. Each module provides summary information concerning the importance of the activity in its portion of the virtual environment to the user. Our prototype system, called the Sentinel, is embedded within a virtual environment observatory and provides situation awareness assistance for users within a large virtual environment.


2012 ◽  
Vol 21 (4) ◽  
pp. 452-469 ◽  
Author(s):  
Jun Lee ◽  
Mingyu Lim ◽  
HyungSeok Kim ◽  
Jee‐In Kim

A concurrency control mechanism for a networked virtual environment is a key element in many collaborative computer-aided design applications. However, conventional object-based locking mechanisms restrict the behaviors of nonowners, and an attribute-based locking mechanism may produce another problem called task-surprise, which disturbs users' collaboration. In this paper, we propose a hybrid concurrency control mechanism that reduces restrictions of nonowners' behaviors and task-surprises in a networked virtual environment. The proposed method consists of two concurrency control approaches: task-based concurrency control and personal workspaces. The task-based concurrency control approach allows nonowners to do some tasks if they do not conflict with the tasks of the owner of the shared object. The personal workspaces approach provides an independent workspace where a user can manipulate copies of the shared objects. The proposed method was applied to a collaborative level design for a large-scale online game as a case study. We evaluated its performance by experiments and user studies to check acceptance and usability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document