Supporting Fine-Grained Concurrent Tasks and Personal Workspaces for a Hybrid Concurrency Control Mechanism in a Networked Virtual Environment

2012 ◽  
Vol 21 (4) ◽  
pp. 452-469 ◽  
Author(s):  
Jun Lee ◽  
Mingyu Lim ◽  
HyungSeok Kim ◽  
Jee‐In Kim

A concurrency control mechanism for a networked virtual environment is a key element in many collaborative computer-aided design applications. However, conventional object-based locking mechanisms restrict the behaviors of nonowners, and an attribute-based locking mechanism may produce another problem called task-surprise, which disturbs users' collaboration. In this paper, we propose a hybrid concurrency control mechanism that reduces restrictions of nonowners' behaviors and task-surprises in a networked virtual environment. The proposed method consists of two concurrency control approaches: task-based concurrency control and personal workspaces. The task-based concurrency control approach allows nonowners to do some tasks if they do not conflict with the tasks of the owner of the shared object. The personal workspaces approach provides an independent workspace where a user can manipulate copies of the shared objects. The proposed method was applied to a collaborative level design for a large-scale online game as a case study. We evaluated its performance by experiments and user studies to check acceptance and usability of the proposed method.

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Quax ◽  
Jeroen Dierckx ◽  
Bart Cornelissen ◽  
Wim Lamotte

The explosive growth of the number of applications based on networked virtual environment technology, both games and virtual communities, shows that these types of applications have become commonplace in a short period of time. However, from a research point of view, the inherent weaknesses in their architectures are quickly exposed. The Architecture for Large-Scale Virtual Interactive Communities (ALVICs) was originally developed to serve as a generic framework to deploy networked virtual environment applications on the Internet. While it has been shown to effectively scale to the numbers originally put forward, our findings have shown that, on a real-life network, such as the Internet, several drawbacks will not be overcome in the near future. It is, therefore, that we have recently started with the development of ALVIC-NG, which, while incorporating the findings from our previous research, makes several improvements on the original version, making it suitable for deployment on the Internet as it exists today.


2014 ◽  
Vol 590 ◽  
pp. 916-919
Author(s):  
Yan Juan Huo

As the flourishing of computer technology and the appearing of lots of large-scale and well-designed corpora and concordance software, corpus-based approach, an advanced teaching resources, has been widely employed in language researches of various fields and perspectives. English teaching material, the main source of language input, has the quality and authority in Chinese English language teaching classes. The present study attempts to bring about some innovations in construction and designing of teaching material on the basis of the Corpus of Contemporary American English (COCA). Moreover, the research is intended to effectively improve teacher’s input and introducing data-driven learning (DDL), and to effectively stimulate the motivations of students by using this computer-aided and COCA-based designing.


Author(s):  
Syed Adeel Ahmed ◽  
Kurt M. Satter

A usability study was used to measure user performance and user preferences for a CAVETM immersive stereoscopic virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In both the CAVETM and the adaptable technology environments, crystal eye glasses are used to produce a stereoscopic view. An ascension flock of birds tracking system is used for tracking the users head and wand pointing device positions in 3D space. It is argued that with these immersive technologies, including the use of gestures and hand movements, a more natural interface in immersive virtual environments is possible. Such an interface allows a more rapid and efficient set of actions to recognize geometry, interaction within a spatial environment, the ability to find errors, and navigate through a virtual environment. The wand interface provides a significantly improved means of interaction. This study quantitatively measures the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods for navigation termed as Benchmark 1. During testing, testers are given some time to play around with the CAVETM environment for familiarity before undertaking a specific exercise. The testers are then instructed regarding tasks to be completed, and are asked to work quickly without sacrificing accuracy. The research team timed each task, and recorded activity on evaluation sheets for Navigation Test. At the completion of the testing scenario involving navigation, the subject/testers were given a survey document and asked to respond by checking boxes to communicate their subjective opinions.


Sign in / Sign up

Export Citation Format

Share Document