A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

1991 ◽  
Vol 27 (5) ◽  
pp. 3971-3977 ◽  
Author(s):  
R. Wang ◽  
N.A. Demerdash
Author(s):  
J. Pierrus

Wherever possible, an attempt has been made to structure this chapter along similar lines to Chapter 2 (its electrostatic counterpart). Maxwell’s magnetostatic equations are derived from Ampere’s experimental law of force. These results, along with the Biot–Savart law, are then used to determine the magnetic field B arising from various stationary current distributions. The magnetic vector potential A emerges naturally during our discussion, and it features prominently in questions throughout the remainder of this book. Also mentioned is the magnetic scalar potential. Although of lesser theoretical significance than the vector potential, the magnetic scalar potential can sometimes be an effective problem-solving device. Some examples of this are provided. This chapter concludes by making a multipole expansion of A and introducing the magnetic multipole moments of a bounded distribution of stationary currents. Several applications involving magnetic dipoles and magnetic quadrupoles are given.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 930
Author(s):  
András Szegleti ◽  
Ferenc Márkus

In this paper, we present a method by which it is possible to describe a dissipative system (that is modeled by a linear differential equation) in Lagrangian formalism, without the trouble of finding the proper way to model the environment. The concept of the presented method is to create a function that generates the measurable physical quantity, similarly to electrodynamics, where the scalar potential and vector potential generate the electric and magnetic fields. The method is examined in the classical case; the question of quantization is unanswered.


1994 ◽  
Vol 266 ◽  
pp. 121-145 ◽  
Author(s):  
Jiangang Wen ◽  
Philip L.-F. Liu

Mass transport under partially reflected waves in a rectangular channel is studied. The effects of sidewalls on the mass transport velocity pattern are the focus of this paper. The mass transport velocity is governed by a nonlinear transport equation for the second-order mean vorticity and the continuity equation of the Eulerian mean velocity. The wave slope, ka, and the Stokes boundary-layer thickness, k (ν/σ)½, are assumed to be of the same order of magnitude. Therefore convection and diffusion are equally important. For the three-dimensional problem, the generation of second-order vorticity due to stretching and rotation of a vorticity line is also included. With appropriate boundary conditions derived from the Stokes boundary layers adjacent to the free surface, the sidewalls and the bottom, the boundary value problem is solved by a vorticity-vector potential formulation; the mass transport is, in gneral, represented by the sum of the gradient of a scalar potential and the curl of a vector potential. In the present case, however, the scalar potential is trivial and is set equal to zero. Because the physical problem is periodic in the streamwise direction (the direction of wave propagation), a Fourier spectral method is used to solve for the vorticity, the scalar potential and the vector potential. Numerical solutions are obtained for different reflection coefficients, wave slopes, and channel cross-sectional geometry.


Sign in / Sign up

Export Citation Format

Share Document