Reliability investigation and mechanism analysis for a novel bonding method of flexible substrate in 3D integration

Author(s):  
Yu-Tao Yang ◽  
Yu-Chen Hu ◽  
Kuan-Neng Chen
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Tae-Wan Kim ◽  
Kyung-Lim Suk ◽  
Sang-Hoon Lee ◽  
Kyung-Wook Paik

In this study, solder ball incorporated polyvinylidenefluoride (PVDF) nanofiber was added into the ACF system to overcome short circuit issues of fine pitch flex-on-flex (FOF) assembly. Also, in order to improve the thermal mismatch of the flexible substrate which can lead to electrode misalignment during the bonding process, low melting temperature Sn58Bi solder balls were used with vertical ultrasonic (U/S) bonding method. When performing FOF assembly using PVDF nanofiber/Sn58Bi solder ACF and vertical ultrasonic bonding, PVDF nanofiber/Sn58Bi solder ACFs showed 34% higher solder capture rate on an electrode compared to conventional Ni ACFs and conventional Sn58Bi solder ACFs. Additionally, PVDF nanofiber/Sn58Bisolder ACFs showed 100% insulation between neighboring electrodes where conventional Ni ACFs and conventional Sn58Bi solder ACFs showed 75% and 87.5% insulation. Other electrical properties such as contact resistance and current handling capability as well as reliability test of PVDF nanofiber/Sn58Bi solder ACFs showed improved results compared to those of conventional Ni ACFs, which proves the formation of stable solder joint of PVDF nanofiber/Sn58Bi solder ACFs.


Author(s):  
Toshihiko Ooie ◽  
Tetsuo Yano ◽  
Masafumi Yoneda ◽  
Munehide Katsumura

PIERS Online ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 105-108 ◽  
Author(s):  
Haipeng Lu ◽  
Jing Yang ◽  
Longjiang Deng

Author(s):  
Byoung-Joon Kim ◽  
Hae-A-Seul Shin ◽  
In-Suk Choi ◽  
Young-Chang Joo

Abstract The electrical resistance Cu film on flexible substrate was investigated in cyclic bending deformation. The electrical resistance of 1 µm thick Cu film on flexible substrate increased up to 120 % after 500,000 cycles in 1.1 % tensile bending strain. Crack and extrusion were observed due to the fatigue damage of metal film. Low bending strain did not cause any damage on metal film but higher bending strain resulted in severe electrical and mechanical damage. Thinner film showed higher fatigue resistance because of the better mechanical property of thin film. Cu film with NiCr under-layer showed poorer fatigue resistance in tensile bending mode. Ni capping layer did not improve the fatigue resistance of Cu film, but Al capping layer suppressed crack formation and lowered electrical resistance change. The NiCr under layer, Ni capping layer, and Al capping layer effect on electrical resistance change of Cu film was compared with Cu only sample.


2018 ◽  
Vol 28 (2) ◽  
pp. 161-172
Author(s):  
JUNHUI LUO ◽  
XIANLIN LIU ◽  
HAIFENG HUANG ◽  
DECAI MI ◽  
DEQIANG CHE

Sign in / Sign up

Export Citation Format

Share Document