Collaborative manipulation of 3D virtual objects in augmented reality scenarios using mobile devices

Author(s):  
Jeronimo G Grandi ◽  
Iago Berndt ◽  
Henrique G Debarba ◽  
Luciana Nedel ◽  
Anderson Maciel
2017 ◽  
Vol 7 (2) ◽  
pp. 120
Author(s):  
Nur Imansyah ◽  
Sri Handani Widiastuti

Getting information in real time at specific times and locations is especially needed when users have high mobility. But often users are not familiar with the area, so difficulty in finding locations and information. The development of technology for location based services and augmented reality makes it easy to get information from available resources in locations using mobile devices equipped with GPS devices. The research aims to combine hotel location based services and augmented reality in android-based mobile device by manipulating virtual objects into real objects through the camera as input and mobile phone display as output.The integration of hotel location based services and augmented reality is useful for hotel users to be able to search hotel information by directing the camera mobile device in the direction of specific targets to be retrieved information. The output of the system is provided in real time on the mobile device display for the user. Output information provided in the direction of location of the hotel object and information about the object of the hotel. 


Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


Author(s):  
Yulia Fatma ◽  
Armen Salim ◽  
Regiolina Hayami

Along with the development, the application can be used as a medium for learning. Augmented Reality is a technology that combines two-dimensional’s virtual objects and three-dimensional’s virtual objects into a real three-dimensional’s  then projecting the virtual objects in real time and simultaneously. The introduction of Solar System’s material, students are invited to get to know the planets which are directly encourage students to imagine circumtances in the Solar System. Explenational of planets form and how the planets make the revolution and rotation in books are considered less material’s explanation because its only display objects in 2D. In addition, students can not practice directly in preparing the layout of the planets in the Solar System. By applying Augmented Reality Technology, information’s learning delivery can be clarified, because in these applications are combined the real world and the virtual world. Not only display the material, the application also display images of planets in 3D animation’s objects with audio.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker

The method presented in this work reduces the frequency of virtual objects incorrectly occluding real-world objects in Augmented Reality (AR) applications. Current AR rendering methods cannot properly represent occlusion between real and virtual objects because the objects are not represented in a common coordinate system. These occlusion errors can lead users to have an incorrect perception of the environment around them when using an AR application, namely not knowing a real-world object is present due to a virtual object incorrectly occluding it and incorrect perception of depth or distance by the user due to incorrect occlusions. The authors of this paper present a method that brings both real-world and virtual objects into a common coordinate system so that distant virtual objects do not obscure nearby real-world objects in an AR application. This method captures and processes RGB-D data in real-time, allowing the method to be used in a variety of environments and scenarios. A case study shows the effectiveness and usability of the proposed method to correctly occlude real-world and virtual objects and provide a more realistic representation of the combined real and virtual environments in an AR application. The results of the case study show that the proposed method can detect at least 20 real-world objects with potential to be incorrectly occluded while processing and fixing occlusion errors at least 5 times per second.


Author(s):  
T. Polhmann ◽  
D. Parras-Burgos ◽  
F. Cavas-Martínez ◽  
F. J. F. Cañavate ◽  
J. Nieto ◽  
...  

2015 ◽  
Vol 1 (2) ◽  
pp. 306
Author(s):  
Hoger Mahmud Hussen

In this paper the outcome of a project is presented that aims to modify and improve one of the most widely used Augmented Reality tools. Augmented reality (AR), is a fast growing area of virtual reality research. Augmented Reality (AR) is a newly emerging technology by which user’s view of the real world is augmented with additional information from a computer model. ARToolKit is one of the most widely used toolkits for Augmented Reality applications. The toolkit tracks optical markers and overlays virtual objects on the markers. In the current version of the toolkit the overlaid object is stationary or loops regardless of the optical target position, this means that the overlaid object cannot be animated or changed based on the movement of the optical target. The aim is to improve the toolkit, therefore a design solution to modify it were designed and implement so that users can manipulate the position of the overlaid virtual object, through movements of the optical target. The design solution focuses on developing a mathematically based links between the position of the optical target and the overlaid virtual object. To test the solution test cases were developed and the results show that the design solution is effective and the principal idea can be used to develop many applications in different sectors such as education and health.


2021 ◽  
Vol 2111 (1) ◽  
pp. 012029
Author(s):  
Y M Nursita ◽  
S Hadi

Abstract The research aims to develop mobile learning media with augmented reality for electrical measurement instruments. The learner can use this application to improve their skills and knowledge about using electrical measurement instruments correctly. One of the essential skills for electricians is using voltmeter, ammeter, and ohmmeter. The result of measuring they can do some analysis about an issue or troubleshooting the electrical field. From the development research, was produced learning media application product was named ARAVO. ARAVO is an abbreviation of augmented reality of Ammeter, Voltmeter, and Ohmmeter. ARAVO helps learners and even lecturers to simulate the use of electrical measuring instruments by combining virtual objects such as multimeter with the real world. Thus will provide a more visible visualization of how to use electrical measuring instruments before they practice directly with actual measuring instruments. ARAVO is a mobile application that can run on the smartphone platform mobile Android. Into the development of this application must go through several stages before it is ready for use.


Sign in / Sign up

Export Citation Format

Share Document