EAP-ZKP: A Zero-Knowledge Proof based Authentication Protocol to Prevent DDoS Attacks at the Edge in Beyond 5G

Author(s):  
Gholamreza Ramezan ◽  
Amr Abdelnasser ◽  
Bingyang Liu ◽  
Weiyu Jiang ◽  
Fei Yang
Author(s):  
Richard S. Norville ◽  
Kamesh Namuduri ◽  
Ravi Pendse

Zero-knowledge proof (ZKP) based authentication protocols provide a smart way to prove an identity of a node without giving away any information about the secret of that identity. There are many advantages as well as disadvantages to using this protocol over other authentication schemes, and challenges to overcome in order to make it practical for general use. This chapter examines the viability of ZKPs for use in authentication protocols in networks. It is concluded that nodes in a network can achieve a desired level of security by trading off key size, interactivity, and other parameters of the authentication protocol. This chapter also provides data analysis that can be useful in determining expected authentication times based on device capabilities. Pseudocode is provided for implementing a graph-based ZKP on small or limited processing devices.


Author(s):  
NIVEDITA DATTA

In many applications, the password is sent as cleartext to the server to be authenticated thus providing the eavesdropper with opportunity to steal valuable data. This paper presents a simple protocol based on zero knowledge proof by which the user can prove to the authentication server that he has the password without having to send the password to the server as either cleartext or in encrypted format. Thus the user can authenticate himself without having to actually reveal the password to the server. Also, another version of this protocol has been proposed which makes use of public key cryptography thus adding one more level of security to the protocol and enabling mutual authentication between the client & server.


2020 ◽  
Vol 99 (4) ◽  
pp. 3065-3087 ◽  
Author(s):  
Will Major ◽  
William J. Buchanan ◽  
Jawad Ahmad

Author(s):  
Lihua Song ◽  
Xinran Ju ◽  
Zongke Zhu ◽  
Mengchen Li

AbstractInformation security has become a hot topic in Internet of Things (IoT), and traditional centralized access control models are faced with threats such as single point failure, internal attack, and central leak. In this paper, we propose a model to improve the access control security of the IoT, which is based on zero-knowledge proof and smart contract technology in the blockchain. Firstly, we deploy attribute information of access control in the blockchain, which relieves the pressure and credibility problem brought by the third-party information concentration. Secondly, encrypted access control token is used to gain the access permission of the resources, which makes the user's identity invisible and effectively avoids attribute ownership exposure problem. Besides, the use of smart contracts solves the problem of low computing efficiency of IoT devices and the waste of blockchain computing power resources. Finally, a prototype of IoT access control system based on blockchain and zero-knowledge proof technology is implemented. The test analysis results show that the model achieves effective attribute privacy protection, compared with the Attribute-Based Access Control model of the same security level, the access efficiency increases linearly with the increase of access scale.


Sign in / Sign up

Export Citation Format

Share Document