Finite element computation of field and eddy currents of a system consisting of a power transmission line above conductors buried in nonhomogeneous earth

1998 ◽  
Vol 13 (3) ◽  
pp. 876-882 ◽  
Author(s):  
K.J. Satsios ◽  
D.P. Labridis ◽  
P.S. Dokopoulos
2018 ◽  
Vol 55 (3) ◽  
pp. 312-328 ◽  
Author(s):  
Ali-Asghar Zekavati ◽  
Alireza Khodaverdian ◽  
Mohammad-Ali Jafari ◽  
Ahmad Hosseini

This paper captures the behavior of micropiled rafts in power transmission line tower foundations in cohesive soil, concentrating on their uplift performance whether due to the tower position along the line or under wind loading conditions. In this regard, first a number of micropiles were driven into the ground of a project site at the ParehSar power plant, Gilan, Iran. Compression and uplift loading tests were conducted according to relevant standards. On the basis of the field data, a three-dimensional finite element model was developed and subsequently calibrated and verified. The behavior of micropiled rafts subjected to uplift, which is a typical type of loading in foundations of 230 kV four-circuit lattice towers, was then studied by means of this model in terms of a wide-ranging parametric study. In the sensitivity analyses, the impacts of various parameters, such as micropile spacing-to-diameter (s/d) and length-to-diameter (l/d) ratios along with undrained shear strength of the soil, on the uplift capacity of an individual micropile within and out of the group were investigated. Furthermore, interaction factors were computed based on diverse values for undrained shear strength of the soil, s/d ratio, l/d ratio, and grout–soil adhesion. From design and analysis perspectives, the finite element method (FEM) outputs revealed that the efficiency coefficient of micropiled rafts during uplift can be considered equal to one. Moreover, it was found that not only does the behavior of micropiles affect the neighboring micropiles immediately adjacent to the loaded one, but it also influences those in further rows, the result of which would be considering their significance as well.


2016 ◽  
Vol 46 (1) ◽  
pp. 3-16
Author(s):  
Alexander Borisoff Kazakoff ◽  
Boycho Ivanov Marinov

Abstract The work, presented in this paper, appears to be a natural continuation of the work presented and reported before, on the design of power transmission line of a ship, but with different multi-mass model. Some data from the previous investigations are used as a reference data, mainly from the analytical investigations, for the developed in the previ- ous study, frequency and modal analysis of a five mass model of a power transmission line of a ship. In the paper, a profound dynamic analysis of a concrete five mass dynamic model of the power transmission line of a ship is performed using Finite Element Analysis (FEA), based on the previously recommended model, investigated in the previous research and reported before. Thus, the partially validated by frequency analysis five mass model of a power transmission line of a ship is subjected to dynamic analysis. The objective of the work presented in this paper is dynamic modelling of a five mass transmission line of a ship, partial validation of the model and von Mises stress analysis calculation with the help of Finite Element Analysis (FEA) and comparison of the derived results with the analytically calculated values. The partially validated five mass power transmission line of a ship can be used for definition of many dy- namic parameters, particularly amplitude of displacement, velocity and acceleration, respectively in time and frequency domain. The frequency behaviour of the model parameters is investigated in frequency domain and it corresponds to the predicted one.


Author(s):  
M. I. Kazakevitch ◽  
Ye. V. Horokhov ◽  
M. S. Khorol'sky ◽  
S. V. Turbin

Sign in / Sign up

Export Citation Format

Share Document