A low cost multichip packaging technology for monolithic microwave integrated circuits

1995 ◽  
Vol 43 (9) ◽  
pp. 992-997 ◽  
Author(s):  
K. Jayaraj ◽  
T.E. Noll ◽  
D.R. Singh
1995 ◽  
Vol 06 (01) ◽  
pp. 91-124
Author(s):  
INDER J. BAHL

Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multi-function integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.


Author(s):  
Richard G. Sartore

In the evaluation of GaAs devices from the MMIC (Monolithic Microwave Integrated Circuits) program for Army applications, there was a requirement to obtain accurate linewidth measurements on the nominal 0.5 micrometer gate lengths used to fabricate these devices. Preliminary measurements indicated a significant variation (typically 10 % to 30% but could be more) in the critical dimensional measurements of the gate length, gate to source distance and gate to drain distance. Passivation introduced a margin of error, which was removed by plasma etching. Additionally, the high aspect ratio (4-5) of the thick gold (Au) conductors also introduced measurement difficulties. The final measurements were performed after the thick gold conductor was removed and only the barrier metal remained, which was approximately 250 nanometer thick platinum on GaAs substrate. The thickness was measured using the penetration voltage method. Linescan of the secondary electron signal as it scans across the gate is shown in Figure 1.


Sign in / Sign up

Export Citation Format

Share Document