scholarly journals A monofilar spiral antenna and its array above a ground plane-formation of a circularly polarized tilted fan beam

1997 ◽  
Vol 45 (10) ◽  
pp. 1506-1511 ◽  
Author(s):  
H. Nakano ◽  
Y. Shinma ◽  
J. Yamauchi
2013 ◽  
Vol 27 (13) ◽  
pp. 1720-1724
Author(s):  
Ming Chen ◽  
Chi-Chih Chen ◽  
John L. Volakis

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2017 ◽  
Vol 9 (7) ◽  
pp. 1509-1516 ◽  
Author(s):  
Eric Arnaud ◽  
Cyrille Menudier ◽  
Jamil Fouany ◽  
Thierry Monediere ◽  
Marc Thevenot

This paper presents an original solution to design a compact dual circularly polarized isoflux antenna for nanosatellite applications. This kind of antenna has been previously designed in our laboratory, for a single circular polarization. This antenna is composed of a dual circularly polarized feed and a choke horn antenna. This feed is a cross-shaped slot in the ground plane, which provides coupling between a patch and a ring microstrip line with two ports. It is located at the center of a choke horn antenna. The simulated antenna presents an axial ratio <3 dB and a realized gain close to 0 dB over a 400 MHz bandwidth (8.0–8.4 GHz) at the limit of coverage, i.e. 65° whatever the azimuth angle (φ) and the port. A 20 dB matching for each port and 13 dB isolation characteristics between the two ports have been achieved on this bandwidth. It has been realized and successfully measured.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navneet Sharma ◽  
Anubhav Kumar ◽  
Asok De ◽  
Rakesh K. Jain

Abstract A compact, circularly polarized, CPW-fed antenna is proposed for wearable applications in ISM Band (5.8 GHz). The antenna is based on DGS, where the ground plane is responsible for impedance matching. The 10 dB impedance of the proposed antenna varies from 5.39 GHz to 5.94 GHz. The circular stub introduced in the ground plane mitigates the surface current and enriches the 3 dB axial ratio from 5.73 GHz to 5.92 GHz. Proposed antenna exhibits the LHCP and RHCP pattern of circular polarization, the antenna can effectively work for biomedical and wearable applications. The antenna is analyzed on the skin phantom model and the SAR value obtained is 1.218 W/kg, which is below the maximum permissible level. The proposed antenna is also used for the detection of breast tumors.


Author(s):  
Sonal Gupta ◽  
Shilpee Patil ◽  
Chhaya Dalela ◽  
Binod Kumar Kanaujia

Abstract Design of single-feed circularly polarized (CP) microstrip antenna is proposed in this article. The design employs the concept of E-shape patch with inclined fractal defected ground structure (IFDGS), which can improve the impedance bandwidth, gain, and axial ratio (AR) bandwidth. The excellent enhanced impedance bandwidth, axial ratio bandwidth, and gain are achieved by an inclined E-shaped fractal etched on the ground plane. The parameter studies of the E-shaped IFDGS are given to illustrate the way to obtain CP radiation. The third iterative IFDGS is fabricated on easily available FR4 substrate with a size of 0.494 λ0 × 0.494 λ0 × 0.019 λ0 (λ0 is the wavelength in free space at 3.624 GHz). The measured results verify the simulated results and show good agreement. The proposed antenna shows an impedance bandwidth of 12.7% at a centre frequency of 3.47 GHz and 3-dB AR bandwidth for this band is 2.39% at a centre frequency of 3.626 GHz. The measured peak gain for the proposed antenna is found as 8.1 dBi. The proposed antenna can be suitable for mobile WIMAX operation (IEEE 802.16e-2005 standard), wireless communication in CA-band and FCC.


Sign in / Sign up

Export Citation Format

Share Document