A 3.7-to-4.1GHz Narrowband Digital Bang-Bang PLL with a Multitaps LMS Algorithm to Automatically Control the Bandwidth Achieving 183fs Integrated Jitter

Author(s):  
Mario Mercandelli ◽  
Luca Bertulessi ◽  
Carlo Samori ◽  
Salvatore Levantino
Keyword(s):  
2006 ◽  
Vol 65 (6) ◽  
pp. 567-579 ◽  
Author(s):  
Jose Velazquez-Lopez ◽  
Juan Carlos Sanchez-Garcia ◽  
Hector Manuel Perez-Meana

2019 ◽  
Vol 67 (6) ◽  
pp. 405-414 ◽  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Hui Guo ◽  
Bin Gao ◽  
...  

Active noise control (ANC) is used to reduce undesirable noise, particularly at low frequencies. There are many algorithms based on the least mean square (LMS) algorithm, such as the filtered-x LMS (FxLMS) algorithm, which have been widely used for ANC systems. However, the LMS algorithm cannot balance convergence speed and steady-state error due to the fixed step size and tap length. Accordingly, in this article, two improved LMS algorithms, namely, the iterative variable step-size LMS (IVS-LMS) and the variable tap-length LMS (VT-LMS), are proposed for active vehicle interior noise control. The interior noises of a sample vehicle are measured and thereby their frequency characteristics. Results show that the sound energy of noise is concentrated within a low-frequency range below 1000 Hz. The classical LMS, IVS-LMS and VT-LMS algorithms are applied to the measured noise signals. Results further suggest that the IVS-LMS and VT-LMS algorithms can better improve algorithmic performance for convergence speed and steady-state error compared with the classical LMS. The proposed algorithms could potentially be incorporated into other LMS-based algorithms (like the FxLMS) used in ANC systems for improving the ride comfort of a vehicle.


2021 ◽  
Vol 185 ◽  
pp. 108081
Author(s):  
Neil J. Bershad ◽  
Eweda Eweda ◽  
Jose C.M. Bermudez

2021 ◽  
Vol 11 (12) ◽  
pp. 5723
Author(s):  
Chundong Xu ◽  
Qinglin Li ◽  
Dongwen Ying

In this paper, we develop a modified adaptive combination strategy for the distributed estimation problem over diffusion networks. We still consider the online adaptive combiners estimation problem from the perspective of minimum variance unbiased estimation. In contrast with the classic adaptive combination strategy which exploits orthogonal projection technology, we formulate a non-constrained mean-square deviation (MSD) cost function by introducing Lagrange multipliers. Based on the Karush–Kuhn–Tucker (KKT) conditions, we derive the fixed-point iteration scheme of adaptive combiners. Illustrative simulations validate the improved transient and steady-state performance of the diffusion least-mean-square LMS algorithm incorporated with the proposed adaptive combination strategy.


2021 ◽  
Vol 11 (14) ◽  
pp. 6288
Author(s):  
Hang Su ◽  
Chang-Myung Lee

The generalized sidelobe canceller (GSC) method is a common algorithm to enhance audio signals using a microphone array. Distortion of the enhanced audio signal consists of two parts: the residual acoustic noise and the distortion of the desired audio signal, which means that the desired audio signal is damaged. This paper proposes a modified GSC method to reduce both kinds of distortion when the desired audio signal is a non-stationary speech signal. First, the cross-correlation coefficient between the canceling signal and the error signal of the least mean square (LMS) algorithm was added to the adaptive process of the GSC method to reduce the distortion of the enhanced signal while the energy of the desired signal frame was increased suddenly. The sidelobe pattern of beamforming was then presented to estimate the noise signal in the beamforming output signal of the GSC method. The noise component of the beamforming output signal was decreased by subtracting the estimated noise signal to improve the denoising performance of the GSC method. Finally, the GSC-SN-MCC method was proposed by merging the above two methods. The experiment was performed in an anechoic chamber to validate the proposed method in various SNR conditions. Furthermore, the simulated calculation with inaccurate noise directions was conducted based on the experiment data to inspect the robustness of the proposed method to the error of the estimated noise direction. The experiment data and calculation results indicated that the proposed method could reduce the distortion effectively under various SNR conditions and would not cause more distortion if the estimated noise direction is far from the actual noise direction.


Sign in / Sign up

Export Citation Format

Share Document