A Computationally Efficient, Hardware Re-configurable Architecture for QRS Detection and ECG authentication

Author(s):  
Weihong Yan ◽  
Yuxin Ji ◽  
Ce Ma ◽  
Lining Hu ◽  
Yang Zhao ◽  
...  
2021 ◽  
Vol 11 (15) ◽  
pp. 6995
Author(s):  
Lorenzo Bachi ◽  
Lucia Billeci ◽  
Maurizio Varanini

Heartbeat detection is the first step in automatic analysis of the electrocardiogram (ECG). For mobile and wearable devices, the detection process should be both accurate and computationally efficient. In this paper, we present a QRS detection algorithm based on moving average filters, which affords a simple yet robust signal processing technique. The decision logic considers the rhythmic and morphological features of the QRS complex. QRS enhancing is performed with channel-specific moving average cascades selected from a pool of derivative systems we designed. We measured the effectiveness of our algorithm on well-known benchmark databases, reporting F1 scores, sensitivity on abnormal beats and processing time. We also evaluated the performances of other available detectors for a direct comparison with the same criteria. The algorithm we propose achieved satisfying performances on par with or higher than the other QRS detectors. Despite the performances we report are not the highest that have been published so far, our approach to QRS detection enhances computational efficiency while maintaining high accuracy.


2020 ◽  
Author(s):  
E Bori ◽  
A Navacchia ◽  
L Wang ◽  
L Duxbury ◽  
S McGuan ◽  
...  

Author(s):  
B. Aparna ◽  
S. Madhavi ◽  
G. Mounika ◽  
P. Avinash ◽  
S. Chakravarthi

We propose a new design for large-scale multimedia content protection systems. Our design leverages cloud infrastructures to provide cost efficiency, rapid deployment, scalability, and elasticity to accommodate varying workloads. The proposed system can be used to protect different multimedia content types, including videos, images, audio clips, songs, and music clips. The system can be deployed on private and/or public clouds. Our system has two novel components: (i) method to create signatures of videos, and (ii) distributed matching engine for multimedia objects. The signature method creates robust and representative signatures of videos that capture the depth signals in these videos and it is computationally efficient to compute and compare as well as it requires small storage. The distributed matching engine achieves high scalability and it is designed to support different multimedia objects. We implemented the proposed system and deployed it on two clouds: Amazon cloud and our private cloud. Our experiments with more than 11,000 videos and 1 million images show the high accuracy and scalability of the proposed system. In addition, we compared our system to the protection system used by YouTube and our results show that the YouTube protection system fails to detect most copies of videos, while our system detects more than 98% of them.


2020 ◽  
Author(s):  
Kaihua Zhang ◽  
Ty Balduf ◽  
Marco Caricato

<div> <div> <p> </p><div> <div> <div> <p>This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD-MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM-B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10-20% with CAM-B3LYP and 20-30% with B3LYP. The data show that the contribution of the electric dipole-magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole-electric quadrupole polarizability tensor. The difficult case of (1S,4S)-(–)-norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM-B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistently with previous reports on isotropic OR. The CCSD-MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials. </p> </div> </div> </div> </div> </div>


2019 ◽  
Author(s):  
Madhumita Rano ◽  
Sumanta K Ghosh ◽  
Debashree Ghosh

<div>Combining the roles of spin frustration and geometry of odd and even numbered rings in polyaromatic hydrocarbons (PAHs), we design small molecules that show exceedingly small singlet-triplet gaps and stable triplet ground states. Furthermore, a computationally efficient protocol with a model spin Hamiltonian is shown to be capable of qualitative agreement with respect to high level multireference calculations and therefore, can be used for fast molecular discovery and screening.</div>


Sign in / Sign up

Export Citation Format

Share Document