Spatial integration for a nonlinear path tracking control law

Author(s):  
M. Davidson ◽  
V. Bahl ◽  
K.L. Moore
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Donghoon Kim ◽  
Sungwook Yang

Most of the spherical unmanned aerial vehicles (SUAVs) use control surfaces, which are functions of aileron and an elevator, to generate control torque. The work proposes a new conceptual design of an SUAV system controlled through center-of-gravity (CG) variations with its path-tracking control law designed for the system. Compared to the one using control surfaces, the concept suggested is beneficial in the aspect of the expandability of building lighter and smaller SUAVs, especially. A CG variation principle by actuating a pendulum type of a moving part is considered as a methodology for both translational and rotational motion control of an SUAV. Since variations of the moment-of-inertia (MOI) elements which resulted from the motion of the moving part affect the performance of the suggested method, the variations of MOI analysis are performed for all angular ranges of the moving part. As a result, certain angular ranges for the moving part to prevent the degradation of the path-tracking performance by the effect of the MOI changes are found. By considering the findings, numerical studies are performed for hovering, ascent, descent, and horizontal tracking missions. The applicability of the proposed SUAV system and the corresponding controller to achieve the path-tracking missions is demonstrated through the numerical simulation.


2021 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Julius Kolb ◽  
Gunter Nitzsche ◽  
Sebastian Wagner ◽  
Klaus Röbenack

This paper considers the lateral control of articulated wheeled vehicles in backward motion. The parameterized articulated vehicle is composed of a car-like truck and N passive trailers, resulting in one single steerable axle. First a nonlinear path tracking control law based on exact linearization of an offset model is reviewed and the general stability conditions of such systems is presented. Second, a stability analysis for some vehicle cases is performed and verified in simulation. The possible application of this path tracking control law in real world articulated vehicles is discussed, and its limitations are shown.


2014 ◽  
Vol 716-717 ◽  
pp. 1512-1517
Author(s):  
Yu Ma ◽  
Yong Zhang ◽  
Jin Cheng ◽  
Qin Jun Zhao

With the social development and the continuous progress of science and technology, the mobile robots can greatly improve efficiency, reduce costs, many of these applications can be attributed to the backward path tracking control problem. A controller for backward path tracking of mobile robot with two trailers is addressed in this paper. The paper presents a new approach to stabilizing the system in backward motion by controlling the orientation angles of the two trailers. Nonlinear smooth control laws for orientations of the trailers with asymptotic stability in backward motion are then proposed. The result simulated in Simulink illustrates the effectiveness of the control law and the controller.


Sign in / Sign up

Export Citation Format

Share Document