scholarly journals Hybrid One-Way Full-Duplex/Two-Way Half-Duplex Relaying Scheme

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 7737-7745 ◽  
Author(s):  
Yurong Wang ◽  
Kui Xu ◽  
Aijun Liu ◽  
Xiaochen Xia
Keyword(s):  
2011 ◽  
Vol 383-390 ◽  
pp. 6840-6845 ◽  
Author(s):  
Yong Hong Gu ◽  
Wei Huang ◽  
Qiao Li Yang

To transmit and receive data over any network successfully, a protocol is required to manage the flow. High-level Data Link Control (HDLC) protocol is defined in Layer 2 of OSI model and is one of the most commonly used Layer 2 protocol. HDLC supports both full-duplex and half-duplex data transfer. In addition, it offers error control and flow control. Currently on the market there are many dedicated HDLC chips, but these chips are neither of control complexity nor of limited number of channels. This paper presents a new method for implementing a multi-channel HDLC protocol controller using Altera FPGA and VHDL as the target technology. Implementing a multi-channel HDLC protocol controller in FPGA offers the flexibility, upgradability and customization benefits of programmable logic and also reduces the total cost of every project which involves HDLC protocol controllers.


2016 ◽  
Vol 52 (6) ◽  
pp. 483-485 ◽  
Author(s):  
Dingzhu Wen ◽  
Guanding Yu

Author(s):  
R. Rajesh ◽  
P. G. S. Velmurugan ◽  
S. J. Thiruvengadam ◽  
P. S. Mallick

In this paper, a bidirectional full-duplex amplify- and-forward (AF) relay network with multiple antennas at source nodes is proposed. Assuming that the channel state information is known at the source nodes, transmit antenna selection and maximal ratio combining (MRC) are employed when source nodes transmit information to the relay node and receive information from the relay node respectively, in order to improve the overall signal-to-interference plus noise ratio (SINR). Analytical expressions are derived for tight upper bound SINR at the relay node and source nodes upon reception. Further, losed form expressions are also derived for end-to-end outage probability of the proposed bidirectional full-duplex AF relay network in the Nakagami-m fading channel environment. Although self-interference at the relay node limits the performance of the full-duplex network, the outage performance of the proposed network is better than that of conventional bidirectional full-duplex and half-duplex AF relay networks, due to the selection diversity gain in TAS and diversity and array gain in MRC.


Sign in / Sign up

Export Citation Format

Share Document