scholarly journals Distributed Secondary Control Method for Islanded Microgrids With Communication Constraints

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 5812-5821 ◽  
Author(s):  
Wenfa Kang ◽  
Qiang Li ◽  
Mengkai Gao ◽  
Xingxin Li ◽  
Jianguo Wang ◽  
...  
Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 140 ◽  
Author(s):  
Eva González-Romera ◽  
Enrique Romero-Cadaval ◽  
Carlos Roncero-Clemente ◽  
Mercedes Ruiz-Cortés ◽  
Fermín Barrero-González ◽  
...  

It is usual in literature that power sharing among grid-forming sources of an isolated microgrid obeys their energy rating, instead of economic agreements between stakeholders, and circulating energy among them is usually avoided. However, these energy interchanges make strong sense and classical power sharing methods must be reformulated in the context of prosumer-based microgrids. This paper proposes a secondary control method for a prosumer-based low-voltage nanogrid that allows for energy interchange between prosumers, where storage systems, together with PV generators, are the controllable grid-forming sources. A power flow technique adapted to islanded microgrids is used for secondary control algorithm and the whole hierarchical control strategy for the prosumer converter is simulated and validated. This hierarchical control consists of three stages: tertiary control plans the energy interchange among prosumers, secondary obtains different voltage and power setpoints for each of the grid-forming sources, and, finally, primary control guarantees stable voltage and frequency values within the nanogrid with droop rules. Inner control loops for the power converter are also defined to track setpoints and assure stable performance. Simulation tests are carried out, which prove the stability of the proposed methods and the accuracy of the setpoint tracking.


2020 ◽  
Vol 10 (5) ◽  
pp. 1558
Author(s):  
Jin-Oh Lee ◽  
Yun-Su Kim

This paper presents a control method for inverter-interfaced distributed generation (DG) and energy storage systems (ESSs) in an islanded microgrid. The proposed method is focused on secondary control, particularly frequency restoration and maintaining the ESSs’ state of charge (SOC). To recover frequency deviation due to load change, an ESS is used as a droop-controlled grid-forming source. However, the grid-forming ESS cannot manage its own SOC, since it cannot control its own output power; hence, grid-feeding DGs are used to maintain the SOC within a desired range. Management of the SOC, as well as frequency restoration, is conducted by using local controllers without any communication devices, since dependency on communication may deteriorate system reliability in the case of failure. The proposed method for maintaining SOC can be realized by adjusting the system frequency, which is the only value that can be measured locally with almost the same value at every node in a steady state. Frequency restoration can be achieved by a simple ON/OFF scheme of the integral controller with a hysteresis loop to solve problems caused by differences between frequency measurements or set points among DGs.


2016 ◽  
Vol 31 (9) ◽  
pp. 6658-6673 ◽  
Author(s):  
Panbao Wang ◽  
Xiaonan Lu ◽  
Xu Yang ◽  
Wei Wang ◽  
Dianguo Xu

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2793 ◽  
Author(s):  
Tao Wu ◽  
Yanghong Xia ◽  
Liang Wang ◽  
Wei Wei

Based on the droop control, voltage regulation at the secondary control is required to eliminate the deviation of the average voltage across the microgrid. Meanwhile, to prevent any of energy storage (ESs) from over-charging or over-discharging, State-of-Charge (SoC) balancing should be added in the secondary control. This paper proposes a distributed secondary control in the DC microgrid based on the multiagent system (MAS). This controller consists of voltage regulation and time-oriented SoC balancing. In voltage regulation, a PI controller adjusts the droop parameters according to the discrepancy between the average voltage and the reference voltage. In SoC balancing, controller operates in charging mode or discharging mode according to changes of the global average SoC. Being different from the conventional method, the time-oriented SoC balancing method is designed to balance charge/discharge time rather than to balance SoC directly. Thus, SoCs reach a consensus only at the last moment when all ES nodes charge or discharge completely. Furthermore, characteristics, global dynamic model, and steady-state analysis of the proposed control method are studied. Finally, MATLAB/Simulink simulations are performed to verify the effectiveness of the proposed control.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 399
Author(s):  
Mahmuda Begum ◽  
Mohsen Eskandari ◽  
Mohammad Abuhilaleh ◽  
Li Li ◽  
Jianguo Zhu

This research suggests a novel distributed cooperative control methodology for a secondary controller in islanded microgrids (MGs). The proposed control technique not only brings back the frequency/voltage to its reference values, but also maintains precise active and reactive power-sharing among distributed generation (DG) units by means of a sparse communication system. Due to the dynamic behaviour of distributed secondary control (DSC), stability issues are a great concern for a networked MG. To address this issue, the stability analysis is undertaken systematically, utilizing the small-signal state-space linearized model of considering DSC loops and parameters. As the dynamic behaviour of DSC creates new oscillatory modes, an intelligent fuzzy logic-based parameter-tuner is proposed for enhancing the system stability. Accurate tuning of the DSC parameters can develop the functioning of the control system, which increases MG stability to a greater extent. Moreover, the performance of the offered control method is proved by conducting a widespread simulation considering several case scenarios in MATLAB/Simscape platform. The proposed control method addresses the dynamic nature of the MG by supporting the plug-and-play functionality, and working even in fault conditions. Finally, the convergence and comparison study of the offered control system is shown.


2021 ◽  
Vol 34 (4) ◽  
pp. 1364-1378
Author(s):  
Zhonghua Pang ◽  
Chuandong Bai ◽  
Guoping Liu ◽  
Qinglong Han ◽  
Xianming Zhang

Sign in / Sign up

Export Citation Format

Share Document