networked predictive control
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 34 (4) ◽  
pp. 1364-1378
Author(s):  
Zhonghua Pang ◽  
Chuandong Bai ◽  
Guoping Liu ◽  
Qinglong Han ◽  
Xianming Zhang

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142093057
Author(s):  
Dong-Liang Chen ◽  
Guo-Ping Liu ◽  
Ru-Bo Zhang ◽  
Xingru Qu

In this article, the coordinated path-following control problem for networked unmanned surface vehicles is investigated. The communication network brings time delays and packet dropouts to the fleet, which will have negative effects on the control performance of the fleet. To attenuate the negative effects, a novel networked predictive control scheme is proposed. By introducing the predictive error into the control scheme, the proposed control strategy admits some advantages compared with existing networked predictive control strategies, for example, a degree of robustness to disturbances, lower requirements for the computing capacity of the onboard processors, high flexibility in controller design, and so on. Conditions that guarantee the control performance of the overall system are derived in the theoretical analysis. At last, experiments on hovercraft test beds are implemented to verify the effectiveness of the proposed control scheme.


Author(s):  
Rihab Kouki ◽  
Hichem Salhi ◽  
Faouzi Bouani

This article is concerned with the design of wireless-networked control framework based on Internet of Things technology and predictive control strategy to remote control a thermal benchmark system. In order to improve the control performance of systems, an autonomous real-time solution is proposed for handling network problems. The adopted control strategy is divided into two cooperative parts under a master–slave architecture, in which two STM32 microcontrollers are investigated. The slave board is connected closely to the process and the master one is a distant controller. The microcontrollers communicate wirelessly through the Transmission Control Protocol/Internet Protocol. In the master board, a model predictive output-estimator-based controller is designed to control wirelessly the benchmark system, even though the incoming outputs from the slave board are lost. However, a buffered structure is implemented on the slave board to compensate the input losses of the arrived control sequences. The performance of the proposed wireless-networked predictive control compensation strategy for packet loss and perturbation handling in the wireless-networked control system in this work is verified through different experimentation conditions. Also, a comparative study with a wireless-networked proportional integral controller is performed to demonstrate the effectiveness of wireless-networked predictive control strategy for practical Internet of Things applications.


Sign in / Sign up

Export Citation Format

Share Document