scholarly journals Vision-Based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 23969-23978 ◽  
Author(s):  
Yuanwei Wu ◽  
Yao Sui ◽  
Guanghui Wang
2014 ◽  
Vol 1077 ◽  
pp. 221-226
Author(s):  
Dan Popescu ◽  
Loretta Ichim ◽  
Radu Fratila ◽  
Diana Gornea

Tracking the road or a mobile object and also obstacle avoidance are very important components that must be considered in the process of developing a robotic system. In this paper we propose a mobile platform for indoor navigation, based on a cheap computing hardware, which is able to be configured in two scenarios: the first refers to the movement of the robot on a predetermined path and to avoidance the obstacles, while maintaining the final target, and the second refers to the possibility of identifying and tracking a target. The robotic system aggregates the information acquired from different sensors and combines the computing resources from the mobile platform with those from the central unit. MATLAB is used for all the implementations and tests, to develop algorithms and to create models and applications. The robot's communication with central unit is wireless. Experimental results show that the mobile platform is able to perform, in real time, the following tasks in indoor environment: the recognition of the object, localization and tracking and also the obstacles avoidance.


Author(s):  
Max Mauro Dias Santos ◽  
Joao Eduardo Hoffmann ◽  
Hilkija Gaius Tosso ◽  
Asad Waqar Malik ◽  
Anis Ur Rahman ◽  
...  

Author(s):  
Aimé Lay-Ekuakille ◽  
Moise Avoci Ugwiri ◽  
Vito Telesca ◽  
Ramiro Velazquez ◽  
Giuseppe Passarella ◽  
...  

2021 ◽  
pp. 101-107
Author(s):  
Mohammad Alshehri ◽  

Presently, a precise localization and tracking process becomes significant to enable smartphone-assisted navigation to maximize accuracy in the real-time environment. Fingerprint-based localization is the commonly available model for accomplishing effective outcomes. With this motivation, this study focuses on designing efficient smartphone-assisted indoor localization and tracking models using the glowworm swarm optimization (ILT-GSO) algorithm. The ILT-GSO algorithm involves creating a GSO algorithm based on the light-emissive characteristics of glowworms to determine the location. In addition, the Kalman filter is applied to mitigate the estimation process and update the initial position of the glowworms. A wide range of experiments was carried out, and the results are investigated in terms of distinct evaluation metrics. The simulation outcome demonstrated considerable enhancement in the real-time environment and reduced the computational complexity. The ILT-GSO algorithm has resulted in an increased localization performance with minimal error over the recent techniques.


2012 ◽  
Vol 463-464 ◽  
pp. 1277-1280 ◽  
Author(s):  
Constantin Bucşan ◽  
Mihai Avram

This paper presents a method for increasing the speed and the positioning accuracy of the positioning systems with mechanical position feedback. The method consists in using a position transducer for real time determination of the position of the load and correcting this position using an adequate algorithm. It is preferable not to modify the construction of the positioning unit, allowing the user to decide when to use this correction method according to the practical application. An interesting solution to this problem is to use an external space-position finding sensing system, as presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document