scholarly journals Utility Scale Compressed Air Energy Storage and Clean Power Using Waste Heat From Thermal Power Plants Plus Added Protection for Nuclear Power Plants

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 34422-34430 ◽  
Author(s):  
Willard H. Wattenburg
2013 ◽  
Vol 448-453 ◽  
pp. 2786-2789 ◽  
Author(s):  
Jin Li ◽  
Chu Fu Li ◽  
Yan Xia Zhang ◽  
Hui Guo Yue

Nuclear plants are facing more and more peaking pressure, and combined operation with compressed air energy storage (CAES) systems is an effective approach to improve its peaking capacity. This work first simulates and conducts the exergy analysis for the CAES system. The results show that exergy efficiency of the CAES system is about 51.7%, as well as the exergy loss are primary in the fuel combustion and compressed air cooling processes, accounted for 25.4% and 11.3% of total exergy, respectively. Subsequently, three combined operation modes between CAES system and nuclear power plants for power grid peaking are investigated, which shows that three section tracking mode and incomplete tracking mode can achieve the balance between peaking effects and peaking cost.


1974 ◽  
Vol 9 (1) ◽  
pp. 188-195
Author(s):  
G. Bethlendy

Abstract Even with the latest technology, more than 60% of the heat produced by any thermal engine - whether the fuel is coal, oil, gas or uranium - must be taken back into the environment by cooling water or exhaust gas. For economical reasons, the usual means of disposing of the “waste” heat from a thermal-power plant is to pump river, lake or sea water through the parts of the plant concerned. Nuclear power plants use their heat as efficiently as older thermal plants, 30–33%. Modern thermal plants, however work with as high as 40% efficiency, and release about 10–13% of their total fuel-heat into the air through the stack. As a result of the combination of all these factors, nuclear power plants release about 68–70% of total input heat into the cooling water. In practice this means that the plant must be able to draw upon a source of cooling water which is large enough, which flows quickly or is cold enough not to be seriously effected by the return of warmed-up water from the power station. Where this is not possible, it may be necessary to build relatively expensive cooling ponds and/or towers so that the heat is also released to the air rather than only to a local body of water. The thermal effects could be detrimental or beneficial depending on the utilization of the water body. At the present time the utilities are aware of these problems and very extensive aquatic studies are being made before and after the construction of the plants. Some beneficial uses of waste heat are being sought via research and demonstration projects (e.g. in agriculture, aquaculture, district heating, etc.).


2012 ◽  
Vol 67 (1) ◽  
pp. 120-127 ◽  
Author(s):  
V. A. Gordienko ◽  
S. N. Brykin ◽  
R. E. Kuzin ◽  
I. S. Serebryakov ◽  
M. V. Starkov ◽  
...  

Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that electrical power generation is the key factor for advances in industry, agriculture, and standard of living. In general, electrical energy can be generated by (1) nonrenewable energy sources such as coal, natural gas, oil, and nuclear; and (2) renewable energy sources such as hydro, wind, solar, biomass, geothermal, and marine. However, the main sources for electrical energy generation are (1) thermal—primarily coal and secondary natural gas, (2) “large” hydro, and (3) nuclear. Other energy sources might have a level of impact in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that, they are still the largest emitters of carbon dioxide into the atmosphere. Therefore, reliable non–fossil fuel energy generation, such as nuclear power, is becoming more and more attractive. However, current nuclear power plants (NPPs) are way behind in thermal efficiency (30–42%) compared to the efficiency of advanced thermal power plants. Therefore, it is important to consider various ways to enhance the thermal efficiency of NPPs. This paper presents a comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012150
Author(s):  
E Burdenkova

Abstract This work is devoted to the problem of utilization of waste heat from condensers of thermal power plants and nuclear power plants. The waste heat of the condensers of TPPs and NPPs, together with the circulating water, enters the environment, causing its thermal pollution. The use of this heat in an energy-biological complex, for example, in fisheries, increases their efficiency and solves an environmental problem. Compared to ordinary ponds, this energy complex has an almost year-round increase in biomass and accelerated maturation of producers. The article presents a developed methodology that makes it possible to assess the effectiveness of such a fishery. Calculations using this method were carried out for a fish farm raising sturgeons on the basis of the waste heat of a nuclear power plant with a VVER-1200 reactor and a K-1200-6.8/50 turbine


2018 ◽  
Vol 65 (9) ◽  
pp. 641-650
Author(s):  
V. G. Kritskii ◽  
I. G. Berezina ◽  
A. V. Gavrilov ◽  
E. A. Motkova ◽  
N. A. Prokhorov

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Mostafa Nasouri Gilvaei ◽  
Mahmood Hosseini Imani ◽  
Mojtaba Jabbari Ghadi ◽  
Li Li ◽  
Anahita Golrang

With the advent of restructuring in the power industry, the conventional unit commitment problem in power systems, involving the minimization of operation costs in a traditional vertically integrated system structure, has been transformed to the profit-based unit commitment (PBUC) approach, whereby generation companies (GENCOs) perform scheduling of the available production units with the aim of profit maximization. Generally, a GENCO solves the PBUC problem for participation in the day-ahead market (DAM) through determining the commitment and scheduling of fossil-fuel-based units to maximize their own profit according to a set of forecasted price and load data. This study presents a methodology to achieve optimal offering curves for a price-taker GENCO owning compressed air energy storage (CAES) and concentrating solar power (CSP) units, in addition to conventional thermal power plants. Various technical and physical constraints regarding the generation units are considered in the provided model. The proposed framework is mathematically described as a mixed-integer linear programming (MILP) problem, which is solved by using commercial software packages. Meanwhile, several cases are analyzed to evaluate the impacts of CAES and CSP units on the optimal solution of the PBUC problem. The achieved results demonstrate that incorporating the CAES and CSP units into the self-scheduling problem faced by the GENCO would increase its profitability in the DAM to a great extent.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


Sign in / Sign up

Export Citation Format

Share Document