scholarly journals Research on Transmission Line Voltage Measurement Method Based on Improved Gaussian Integral

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 73711-73718 ◽  
Author(s):  
Jingang Wang ◽  
Xiang Li ◽  
Shucheng Ou ◽  
Ruiqiang Zhang
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2455 ◽  
Author(s):  
Jingang Wang ◽  
Yanhang Zhao ◽  
Wenjiang Li ◽  
Xianglong Zeng ◽  
Juan Tang ◽  
...  

D-dot sensors meet the development trend towards the downsizing, automation and digitalization of voltage sensors and is one of research hotspots for new voltage sensors at present. The traditional voltage measurement system of D-dot sensors makes possible the reverse solving of wire potentials according to the computational principles of the electric field inverse problem by measuring electric field values beneath the transmission line. Nevertheless, as it is limited by the solving method of the electric field inverse problem, the D-dot sensor voltage measurement system is struggling with solving difficulties and poor accuracy. To solve these problems, this paper suggests introducing a Gaussian integral into the D-dot sensor voltage measurement system to accurately measure the voltage of transmission lines. Based on studies of D-dot sensors, a transmission line voltage measurement method based on Gaussian integrals is proposed and used for the simulation of the electric field of a 220 kV and a 20 kV transmission line. The feasibility of the introduction of the Gaussian integral to solve transmission line voltage was verified by the simulation results. Finally, the performance of the Gaussian integral was verified by an experiment using the transmission line voltage measurement platform. The experimental results demonstrated that the D-dot sensor measurement system based on a Gaussian integral achieves high accuracy and the relative error is lower than 0.5%.


2020 ◽  
Vol 31 (8) ◽  
pp. 085103
Author(s):  
Jingang Wang ◽  
Xiang Li ◽  
Qian Wang ◽  
Lu Zhong ◽  
Xiaobao Zhu

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4340
Author(s):  
Jiarui Fan ◽  
Cheng Ai ◽  
Aofei Guo ◽  
Xiaojun Yan ◽  
Jingang Wang

Electric field numerical integration algorithms can realize the non-contact measurement of transmission line voltage effectively. Although there are many electric field numerical integration algorithms, lack of a comprehensive comparison of accuracy and stability among various algorithms results in difficulties in evaluating the measurement results of various algorithms. Therefore, this paper presents the G-L (Gauss–Legendre) algorithm, the I-G-L (improved Gauss–Legendre) algorithm, and the I-G-C (improved Gauss–Chebyshev) algorithm and proposes a unified error propagation model of the derived algorithms to assess the accuracy of each integration method by considering multiple error sources. Moreover, evaluation criteria for the uncertainty of transmission line voltage measurement are proposed to analyze the stability and reliability of these algorithms. A simulation model and experiment platform were then constructed to conduct error propagation and uncertainty analyses. The results show that the G-L algorithm had the highest accuracy and stability in the scheme with five integral nodes, for which the simulation error was 0.603% and the relative uncertainty was 2.130%. The I-G-L algorithm was more applicable due to the smaller number of integral nodes required, yet the algorithm was less stable in achieving the same accuracy as the G-L algorithm. In addition, the I-G-C algorithm was relatively less accurate and stable in voltage measurement.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Hemalatha ◽  
P. Valsalal

Power system network can undergo outages during which there may be a partial or total blackout in the system. In that condition, transmission of power through the optimal path is an important problem in the process of reconfiguration of power system components. For a given set of generation, load pair, there could be many possible paths to transmit the power. The optimal path needs to consider the shortest path (minimum losses), capacity of the transmission line, voltage stability, priority of loads, and power balance between the generation and demand. In this paper, the Bellman Ford Algorithm (BFA) is applied to find out the optimal path and also the several alternative paths by considering all the constraints. In order to demonstrate the capability of BFA, it has been applied to a practical 230 kV network. This restorative path search guidance tool is quite efficient in finding the optimal and also the alternate paths for transmitting the power from a generating station to demand.


Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1929 ◽  
Author(s):  
Fan Yang ◽  
Yongan Wang ◽  
Manling Dong ◽  
Xiaokuo Kou ◽  
Degui Yao ◽  
...  

With rapid industrial and commercial growth and flourishing population, power demand is increasing rapidly. Modern methods of UHV transmission lines are important to transmit bulk amount of power more efficiently in comparison to earlier methods of transmission. 1200 KV UHV transmission line is India future and therefore forthcoming project to tackle this situation. However as line to line voltage level increases, complexity of the transmission line increases. But, with higher level of line to line voltage, complexity of transmission line increases. ROW is one of the major concerns with transmission lines. Many parameters need to take care in designing; one of them is a magnetic field distribution at surroundings of transmission line. India has initiated to expand its UHV range to 1200kv. Paper suggest magnetic field of three configurations of the 1200KV line. Horizontal and vertical configuration test lines have been installed. Analysis has been done by two methods finite element method and (Method of images) analytical method. FEM is used to solve partial differential equations. Results from both methods have been compared. 3D electric field analysis of configuration also performed. Plotted results are compared with ICNIRP standards and safety limits defined. Adverse effects of excess magnetic field is also discussed. Biological effects of electromagnetic field on people, animals and plants are also discussed. Thus paper aimed at magnetic field calculation and verification with respect to standard. It also helps to utilize less right of way. The subject is under broad development due to its advantages over lower voltage levels and holds significance in future as well.


Sign in / Sign up

Export Citation Format

Share Document