scholarly journals Precision Measurement Method of Laser Beams Based on Coordinate Measuring Machine

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 112736-112741
Author(s):  
Yupeng Li ◽  
Ya Zhao ◽  
Zhi Wang ◽  
Chao Fang ◽  
Wei Sha
2019 ◽  
Vol 9 (8) ◽  
pp. 1598 ◽  
Author(s):  
Fang ◽  
Huang ◽  
Xu ◽  
Cheng ◽  
Chen ◽  
...  

The probe tip of a micro-coordinate Measuring Machine (micro-CMM) is a microsphere with a diameter of hundreds of microns, and its sphericity is generally controlled within tens to hundreds of nanometers. However, the accurate measurement of the microsphere morphology is difficult because of the small size and high precision requirement. In this study, a measurement method with two scanning probes is proposed to obtain dimensions including the diameter and sphericity of microsphere. A series of maximum cross-sectional profiles of the microsphere in different angular directions are scanned simultaneously and differently by the scanning probes. By integrating the data of these maximum profiles, the dimensions of the microsphere can be calculated. The scanning probe is fabricated by combining a quartz tuning fork and a tungsten tip, which have a fine vertical resolution at a sub-nano scale. A commercial ruby microsphere is measured with the proposed method. Experiments that involve the scanning of six section profiles are carried out to estimate the dimensions of the ruby microsphere. The repeatability error of one section profile is 15.1 nm, which indicates that the measurement system has favorable repeatability. The mainly errors in the measurement are eliminated. The measured diameter and roundness are all consistent with the size standard of the commercial microsphere. The measurement uncertainty is evaluated, and the measurement results show that the method can be used to measure the dimensions of microspheres effectively.


2005 ◽  
Vol 295-296 ◽  
pp. 325-330 ◽  
Author(s):  
M. Watanabe ◽  
Ryoshu Furutani

Requirement for precision measurement becomes extremely advanced as industrial needs advances. CMM (Coordinate Measuring Machine) is one of the most adequate measuring machines to meet the requirement. As the precision of CMM becomes higher, it is important to improve the sensitivity of probe. We developed a contact type probe which consisted of a QPD (quadratic photo diode), a ball lens, and a laser diode to detect the displacement of stylus. The probe system has a resolution of 31nm.


2015 ◽  
Vol 9 (5) ◽  
pp. 541-545 ◽  
Author(s):  
Mariko Kajima ◽  
◽  
Tsukasa Watanabe ◽  
Makoto Abe ◽  
Toshiyuki Takatsuji

A calibrator for 2D grid plates have been developed. The calibrator was based on a commercial imaging coordinate measuring machine (imaging CMM). A laser interferometer for the calibration of the x-coordinate and two laser interferometers for the calibration of the y-coordinate were attached to the imaging CMM. By applying multistep measurement method for the calibration procedure, the geometrical error in the calibrator was reduced. The calibration of a precision 2D grid plate was demonstrated, and the expanded uncertainty was estimated to be 0.2 μm (k =2).


2010 ◽  
Vol 139-141 ◽  
pp. 2087-2092
Author(s):  
Xiao Ming Zhao ◽  
Yun Feng

In this paper, a new measurement method is presented, This method is to use a three-coordinate measuring machine (CMM) to test the symmetry error of double keyway in a wheel hub bore. According to the minimum condition criterion of form and position error evaluation, and making use of the minimum tolerance zone of position error evaluation, two symmetry error formulas of double keyway in a wheel hub bore are deduced by geometric analysis. The problems may be encountered when using the formulas in the practical application are discussed. These formulas solve the measurement principle problem of double keyway in the engineering practice. In the end an example is put forward to verify this method and the formulas.


2014 ◽  
Vol 6 ◽  
pp. 715710 ◽  
Author(s):  
Xiao-Gang Ji ◽  
Yan Yang ◽  
Jie Xue ◽  
Xue-Ming He

An accurate and efficient measurement for unknown rotor profile of screw compressor has been a nodus in the field of coordinate measuring machine (CMM) measurement because of its complexity of 3D helical surface, whose normal vectors vary with different measured points, while conventional 2D measuring methods have the inevitable radius compensation. If measured points and corresponding normal vectors are known, a 3D radius compensation then could be applied without a theoretical error. In this paper, a double-measurement method based on Reverse Engineering (RE) is proposed to solve this problem. The first measurement focused on constructing a 3D CAD model as accurate as possible. So, according to the structure characteristics of the unknown rotor, a reasonable WCS is established firstly. Then a DRCH method is presented to eliminate the outliers of measured points. Finally, an indirect method is presented to measure the screw pitch with projection and transformation of measured point sets. In second section, a 3D measurement is planned by DIMS language with setting measured points and corresponding normal vectors, which are calculated according to 3D CAD model constructed in first section. Final experimental analysis indicates that measuring accuracy with this double-measurement method is improved greatly.


2012 ◽  
Vol 605-607 ◽  
pp. 703-707
Author(s):  
Hai Zhang ◽  
Zhou Xu ◽  
Wei Fu

Gear profile deviation means deviation of actual gear profile compared with normal gear profile which is calculated in the gear end plane erected with gear involutes. And it is a main project for assessing moving tranquility. But tradition measuring machines couldn’t own universality well, and they were prone to being impacted by human beings. The paper shows a new method that DMIS programs for inspecting gear profile deviation can be generated automatically in Pro/CMM software according to CAD model of gear and then coordinate measuring machine will be driven by them to inspect gear profile deviation. The measurement method can achieve high-precision measurement collection points, high efficient measurement process, less manual intervention and low-level error.


2018 ◽  
Vol 12 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Alireza Izadi ◽  
Fariborz Vafaee ◽  
Arash Shishehian ◽  
Ghodratollah Roshanaei ◽  
Behzad Fathi Afkari

Background. Recently, non-presintered chromium-cobalt (Cr-Co) blocks with the commercial name of Ceramill Sintron were introduced to the market. However, comprehensive studies on the dimensional accuracy and fit of multi-unit frameworks made of these blocks using the coordinate measuring machine (CMM) are lacking. This study aimed to assess and compare the dimensional changes and fit of conventional casting and milled frameworks using Ceramill Sintron. Methods. A metal model was designed and scanned and 5-unit frameworks were fabricated using two techniques: (I) the conventional casting method (n=20): the wax model was designed, milled in the CAD/CAM machine, flasked and invested; (II) the milling method using Ceramill Sintron blocks (n=20): the wax patterns of group 1 were used; Ceramill Sintron blocks were milled and sintered. Measurements were made on the original reference model and the fabricated frameworks using the CMM in all the three spatial dimensions, and dimensional changes were recorded in a checklist. Data were analyzed with descriptive statistics, and the two groups were compared using one-way ANOVA and Tukey test (α=0.05). Results. The fabricated frameworks in both groups showed significant dimensional changes in all the three dimensions. Comparison of dimensional changes between the two groups revealed no significant differences (P>0.05) except for transverse changes (arch) that were significantly greater in Ceramill Sintron frameworks (P<0.05). Conclusion. The two manufacturing processes were the same regarding dimensional changes and the magnitude of marginal gaps and both processes resulted in significant dimensional changes in frameworks. Ceramill Sintron frameworks showed significantly greater transverse changes than the conventional frameworks.


Sign in / Sign up

Export Citation Format

Share Document