scholarly journals Methodologies on the Enhanced Spatial Resolution of Non-Invasive Optical Brain Imaging: A Review

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 130044-130066 ◽  
Author(s):  
Zeshan Shoaib ◽  
Muhammad Ahmad Kamran ◽  
Malik Muhammad Naeem Mannan ◽  
Myung Yung Jeong
2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
A L Parreira ◽  
P Carmo ◽  
P Adragao ◽  
S Nunes ◽  
J Pinho ◽  
...  

Abstract Introduction and aims The 12-lead ECG is highly inaccurate for localization of the site of origin of supraventricular and ventricular arrhythmias.  Non-invasive mapping systems (ECGI) based on a high number of electrodes recording the electrical activity on the surface of the torso have already proven good accuracy for mapping different arrhythmic substrates. The aim of this study was to assess what is the minimal number of leads needed to obtain a precise mapping with the ECGI. Methods This study enrolled 14 patients (9 male, median age 50 (44-58) years) referred to our center for catheter ablation of premature ventricular contractions (PVC). Patients underwent pre-procedural ECGI using the epicardial and endocardial mapping system . This system uses the DICOM images from contrast computed tomography of the heart and up to 28 adhesive electrodes with 8 leads each, adding up to 224 body-surface leads. All patients underwent invasive electroanatomical mapping and ablation with the magnetic navigation system. We analysed the number of recording leads used to construct the non-invasive activation map of the PVCs and the accuracy and the spatial resolution of the map when comparing to the invasive map. We then reprocessed the exam, using progressively less leads until we only left the leads placed in the standard 12 lead ECG positions and evaluated the concordance with the invasive map as well as the spatial resolution. We considered an earliest activation site (EAS) area of 1 cm2 a good spatial resolution and using a ROC curve we calculated the minimal number of leads necessary to obtain a good spatial resolution. Results The median number of electrodes used for the initial map was 170 (138-177). Concordance between non-invasive and invasive site of origin occurred in 11 out of 14 patients. The results are presented in the Table. The minimal number of electrodes to have a good spatial resolution was 100. The area of EAS was significantly lower when using more than 100 leads, respectively 0.65 (0.5-1) cm2 versus 3 (1.6-5) cm2, p < 0.001. Conclusions The minimal number of leads to achieve a good spatial resolution was high.  Reducing the number of leads resulted in a significant decrease in spatial resolution and a lower concordance rate. ECGI data Number of adhesive electrodes Median number of leads Amycard/Carto concordance Median area of EAS in the ECGI (cm2) Maximal nº electrodes 170 (138-177) 11/14 0.64 (0.5-0.9) 12 electrodes 76 (61-80) 11/14 1.6 (1.4-2.6) 6 electrodes (2 Ant, 2 Lat ,2 Post) 38 (32-44) 9/14 4.3 (3.2-5.4) 12 leads 12 0/14 - Ant anterior; Lat: lateral; Post: posterior; EAS: early activation site. Abstract Figure. Area of EAS according to the N of leads


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227684 ◽  
Author(s):  
Amir Borna ◽  
Tony R. Carter ◽  
Anthony P. Colombo ◽  
Yuan-Yu Jau ◽  
Jim McKay ◽  
...  

2020 ◽  
Author(s):  
Alexandra Razorenova ◽  
Nikolay Yavich ◽  
Mikhail Malovichko ◽  
Maxim Fedorov ◽  
Nikolay Koshev ◽  
...  

AbstractElectroencephalography (EEG) is a well-established non-invasive technique to measure the brain activity, albeit with a limited spatial resolution. Variations in electric conductivity between different tissues distort the electric fields generated by cortical sources, resulting in smeared potential measurements on the scalp. One needs to solve an ill-posed inverse problem to recover the original neural activity. In this article, we present a generic method of recovering the cortical potentials from the EEG measurement by introducing a new inverse-problem solver based on deep Convolutional Neural Networks (CNN) in paired (U-Net) and unpaired (DualGAN) configurations. The solvers were trained on synthetic EEG-ECoG pairs that were generated using a head conductivity model computed using the Finite Element Method (FEM). These solvers are the first of their kind, that provide robust translation of EEG data to the cortex surface using deep learning. Providing a fast and accurate interpretation of the tracked EEG signal, our approach promises a boost to the spatial resolution of the future EEG devices.


2021 ◽  
Author(s):  
Patrick Vagenknecht ◽  
Maiko Ono ◽  
Artur Luzgin ◽  
Bin Ji ◽  
Makoto Higuchi ◽  
...  

Aim: Abnormal tau accumulation plays an important role in tauopathy diseases such as Alzheimers disease and Frontotemporal dementia. There is a need for high-resolution imaging of tau deposits at the whole brain scale in animal models. Here, we demonstrate non-invasive whole brain imaging of tau-targeted PBB5 probe in P301L model of 4-repeat tau at 130 μm resolution using volumetric multi-spectral optoacoustic tomography (vMSOT). Methods: The binding properties of a panel of imaging probes to amyloid-β, 4-repeat K18 tau fibrils were assessed by using Thioflavin T assay and surface plasmon resonance assay. We identified the probe PBB5 suitable for vMSOT tau imaging. The imaging performance was first evaluated using postmortem human brain tissues from patients with Alzheimers disease, corticobasal degeneration and progressive supranuclear palsy. Concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and non-transgenic littermate mice. Ex vivo measurements on excised brains along with multiphoton microscopy and immunofluorescence staining of tissue sections were performed for validation. The spectrally-unmixed vMSOT data was registered with MRI atlas for volume-of-interest analysis. Results: PBB5 showed specific binding to recombinant K18 tau fibrils, AD brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brain. i.v. administration of PBB5 in P301L mice led to retention of the probe in tau-laden cortex and hippocampus in contrast to wild-type animals, as also confirmed by ex vivo vMSOT, epi-fluorescence and multiphoton microscopy results. Conclusion: vMSOT with PBB5 facilitates novel 3D whole brain imaging of tau in P301L animal model with high-resolution for future mechanistic studies and monitoring of putative treatments targeting tau.


2021 ◽  
Author(s):  
Chang Lu ◽  
Linbo Han ◽  
Joanna Wang ◽  
Jiacheng Wan ◽  
Guosheng Song ◽  
...  

Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique. Engineering of magnetic nanoparticles (MNPs) is effective ways to enhance MPI sensitivity and spatial resolution.


2022 ◽  
Author(s):  
Wentian Chen ◽  
Chao Tao ◽  
Zizhong Hu ◽  
Songtao Yuan ◽  
Qinghuai Liu ◽  
...  

Abstract Photoacoustic imaging is a potential candidate for in-vivo brain imaging, whereas, its imaging performance could be degraded by inhomogeneous multi-layered media, consisted of scalp and skull. In this work, we propose a low-artifact photoacoustic microscopy (LAPAM) scheme, which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers. Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes, the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images. Phantom experiment is used to validate the effectiveness of this method. Furthermore, LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull. Experimental results show that the proposed method successfully achieves the low-artifact brain image, which demonstrates the practical applicability of LAPAM. This work might improve the photoacoustic imaging quality in many biomedical applications, which involve tissue with complex acoustic properties, such as brain imaging through scalp and skull.


Sign in / Sign up

Export Citation Format

Share Document