scholarly journals Simulating Time-Series Data for Improved Deep Neural Network Performance

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 131248-131255 ◽  
Author(s):  
Jordan Yeomans ◽  
Simon Thwaites ◽  
William S. P. Robertson ◽  
David Booth ◽  
Brian Ng ◽  
...  
Author(s):  
G. S. Phartiyal ◽  
D. Singh

<p><strong>Abstract.</strong> Crop classification is an important task in many crop monitoring applications. Satellite remote sensing has provided easy, reliable, and fast approaches to crop classification task. In this study, a comparative analysis is made on the performances of various deep neural network (DNN) models for crop classification task using polarimetric synthetic aperture radar (PolSAR) and optical satellite data. For PolSAR data, Sentinel 1 dual pol SAR data is used. Sentinel 2 multispectral data is used as optical data. Five land cover classes including two crop classes of the season are taken. Time series data over the period of one crop cycle is used. Training and testing samples are measured and collected directly from the ground over the study region. Various convolutional neural network (CNN) and long short-term memory (LSTM) models are implemented, analysed, evaluated, and compared. Models are evaluated on the basis of classification accuracy and generalization performance.</p>


2020 ◽  
Vol 12 (9) ◽  
pp. 1503
Author(s):  
Yuan Sun

With the continuous popularization of Global Navigation Satellite System (GNSS) in various applications, the performance requirement for integrity is also increasing, especially in the field of safety-of-life. Although the existing Receiver Autonomous Integrity Monitoring (RAIM) algorithm has been embedded in the GNSS receiver as a standard method, it might still suffer from small fault detection and delay alarm problem for time series fault models. In an effort to solve this problem, a Deep Neural Network (DNN) for RAIM, named RAIM-NET, is investigated in this paper. The main idea of RAIM-NET is to propose a combination of feature vector extraction and DNN model to improve the performance of integrity monitoring, with a problem specifically designed for loss function, obtaining the model parameters. Inspired by the powerful advantages of Recurrent Neural Network (RNN) in time series data processing, a multilayer RNN is applied to build the DNN model structure and improve the detection rate for small faults and reduce the alarm delay for the time series fault event. Finally, real GNSS data experiments are designed to verify the performance of RAIM-NET in fault detection and time delay for integrity monitoring.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Sign in / Sign up

Export Citation Format

Share Document