scholarly journals Comparative Analysis on Small-Signal Stability of Multi-Infeed VSC HVDC System With Different Reactive Power Control Strategies

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 151724-151732 ◽  
Author(s):  
Goran Grdenic ◽  
Marko Delimar ◽  
Jef Beerten
Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3283 ◽  
Author(s):  
Zheren Zhang ◽  
Liang Xiao ◽  
Guoteng Wang ◽  
Jian Yang ◽  
Zheng Xu

This paper determines the minimum short circuit ratio (SCR) requirement for a modular multilevel converter based high-voltage direct current (MMC-HVDC) transmission systems. Firstly, a simplified model of MMC is introduced; the MMC is represented by its AC and DC side equivalent circuit. Next, by linearizing the MMC subsystem and the DC network subsystem, the deduction of the small-signal models of MMC subsystem, the small-signal model of the DC network and MMC-HVDC are carried out successively. Thirdly, the procedure for determining the minimum SCR requirement of MMC-HVDC is described. Finally, case studies are performed on a two-terminal MMC-HVDC system under four typical control schemes. The results show that the restraint factors for the rectifier MMC is predominantly the voltage safety limit constraint, and the restraint factors for the inverter MMC are mainly the phase locked loop (PLL) or the outer reactive power controller. It is suggested that the minimum SCR requirement for the sending and the receiving systems should be 2.0 and 1.5 in the planning stage.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 34946-34953 ◽  
Author(s):  
Anran Zheng ◽  
Chunyi Guo ◽  
Peng Cui ◽  
Wen Jiang ◽  
Chengyong Zhao

Author(s):  
Chunyi Guo ◽  
Anran Zheng ◽  
Zihan Yin ◽  
Chengyong Zhao

Author(s):  
Feba Alias ◽  
Manohar Singh

Abstract The goal towards attaining a sustainable future has led to the rapid increase in the integration of converter control based generators (CCBGs). The low inertia response characteristics of CCBGs and the weak tie lines in interconnected systems pose a huge threat to Small-Signal Stability (SSS). Adequate damping of low-frequency oscillations (LFO) is pivotal in ensuring the maximum power transfer through the critical transmission corridors. These operational issues become more serious with the significant reduction in system inertia as a result of the high penetration of CCBGs. Therefore, appropriate control techniques are an absolute requirement for preventing LFOs from limiting the penetration of CCBGs in interconnected networks. This may also eventually lead to revisions in grid codes mandating CCBGs to provide auxiliary damping control. But, the progressive addition of multiple damping controllers for specific target modes can lead to the drifting of eigenvalues (EVs) associated with other electromechanical modes (EMs) in the system. This is due to the adverse interactions between multiple damping controllers in the uncoordinated control approach and may result in deteriorating SSS. Therefore, this paper proposes a simultaneous coordinated control among Battery Energy Storage System (BESS), Wind Turbine Generators (WTG) and Power System Stabilizer (PSS) for enhancing SSS in networks with high wind penetration by considering both inter-area (IA) and local modes. The performance of the proposed coordinated control is corroborated using IEEE 68 bus system for multiple operating scenarios for which the critical modes in the system have the lowest damping index (DI). The effectiveness of modulating the active power, reactive power and simultaneous modulation of both active and reactive power injected by BESS along with a dual-channel Optimized WTG Damping Controller (DOWDC) and PSS is evaluated. The impact of the different coordinated control strategies on voltage dynamics is also investigated. The simulation results validate the better performance of the proposed coordinated control over uncoordinated control approaches.


Sign in / Sign up

Export Citation Format

Share Document