scholarly journals Adaptive Cross-Domain Feature Extraction Method and Its Application on Machinery Intelligent Fault Diagnosis Under Different Working Conditions

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 535-546 ◽  
Author(s):  
Zenghui An ◽  
Shunming Li ◽  
Xingxing Jiang ◽  
Yu Xin ◽  
Jinrui Wang
2021 ◽  
Author(s):  
Xianzhi Wang ◽  
Shubin Si ◽  
Yongbo Li

Abstract Intelligent fault diagnosis provides great convenience for the prognostic and health management of the rotating machinery. Recently, the entropy-based feature extraction method has aroused researchers’ attentions due to its independence with prior knowledge, unnecessary of preprocessing, and easy to perform. The multiscale diversity entropy has been proven to be a promising feature extraction method for the intelligent fault diagnosis. Compared to the existing entropy methods, the multiscale diversity entropy has advantages of high consistency, strong robustness and high calculation efficiency. However, the multiscale diversity entropy encounters the challenge to extract features for early fault diagnosis due to the weak fault symptoms and strong noise. This can be attributed to the multiscale diversity entropy only concerns the fault information embedded in the low frequency, which ignores the information hidden in the high frequency. To address this defect, the hierarchical diversity entropy (HDE) is proposed, which can synchronously extract fault information hidden in both high and low frequency. Based on HDE and random forest, a novel intelligent fault diagnosis frame has been proposed. The effectiveness of the proposed method has been evaluated through simulated and experimental bearing signals. The results show that the proposed HDE has the best feature extraction ability compare to multiscale sample entropy, multiscale permutation entropy, multiscale fuzzy entropy, and multiscale diversity entropy.


2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.


2019 ◽  
Vol 26 (3-4) ◽  
pp. 146-160
Author(s):  
Xianzhi Wang ◽  
Shubin Si ◽  
Yongbo Li ◽  
Xiaoqiang Du

Fault feature extraction of rotating machinery is crucial and challenging due to its nonlinear and nonstationary characteristics. In order to resolve this difficulty, a quality nonlinear fault feature extraction method is required. Hierarchical permutation entropy has been proven to be a promising nonlinear feature extraction method for fault diagnosis of rotating machinery. Compared with multiscale permutation entropy, hierarchical permutation entropy considers the fault information hidden in both high frequency and low frequency components. However, hierarchical permutation entropy still has some shortcomings, such as poor statistical stability for short time series and inability of analyzing multichannel signals. To address such disadvantages, this paper proposes a new entropy method, called refined composite multivariate hierarchical permutation entropy. Refined composite multivariate hierarchical permutation entropy can extract rich fault information hidden in multichannel signals synchronously. Based on refined composite multivariate hierarchical permutation entropy and random forest, a novel fault diagnosis framework is proposed in this paper. The effectiveness of the proposed method is validated using experimental and simulated signals. The results demonstrate that the proposed method outperforms multivariate multiscale fuzzy entropy, refined composite multivariate multiscale fuzzy entropy, multivariate multiscale sample entropy, multivariate multiscale permutation entropy, multivariate hierarchical permutation entropy, and composite multivariate hierarchical permutation entropy in recognizing the different faults of rotating machinery.


Sign in / Sign up

Export Citation Format

Share Document