Non-stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis

Measurement ◽  
2018 ◽  
Vol 124 ◽  
pp. 453-469 ◽  
Author(s):  
Yongzhuo Li ◽  
Kang Ding ◽  
Guolin He ◽  
Xintao Jiao
2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


2020 ◽  
Vol 15 (5) ◽  
pp. 729-737
Author(s):  
Gong Chen ◽  
Lei Cai ◽  
Lv Zong ◽  
Yan Wang ◽  
Xin Yuan

Passive acoustic technology (PAT) is an important tool to acquire the passive acoustic signals from marine organisms. In this paper, PAT fish detection is introduced at great length, including the relevant instruments, signal processing methods, and workflow. Focusing on the key tasks of PAT fish detection, the authors proposed a sparse decomposition algorithm that extracts coherent ratio of passive fish acoustic signal, and designed a feature extraction method for that signal based on speech imitation technology. Experimental results demonstrate that the proposed sparse decomposition algorithm can detect fish acoustic signal accurately at low signal-to-noise ratios (SNRs), and the proposed feature extraction method can effectively extract fish acoustic signals from the marine background. The research results shed important new light on the protection and management of fishery resources in the seas and oceans.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1319
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Yucai Li ◽  
Wei Lin ◽  
Jinjuan Wang

Effective diagnosis of vibration fault is of practical significance to ensure the safe and stable operation of power transformers. Aiming at the traditional problems of transformer vibration fault diagnosis, a novel feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-scale dispersion entropy (MDE) was proposed. In this paper, CEEMDAN method is used to decompose the original transformer vibration signal. Additionally, then MDE is used to capture multi-scale fault features in the decomposed intrinsic mode functions (IMFs). Next, the principal component analysis (PCA) method is employed to reduce the feature dimension and extract the effective information in vibration signals. Finally, the simplified features are sent into density peak clustering (DPC) to get the fault diagnosis results. The experimental data analysis shows that CEEMDAN-MDE can effectively extract the information of the original vibration signals and DPC can accurately diagnose the types of transformer faults. By comparing different algorithms, the practicability and superiority of this proposed method are verified.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Canyi Du ◽  
Fei Jiang ◽  
Kang Ding ◽  
Feng Li ◽  
Feifei Yu

Engine vibration signals are easy to be interfered by other noise, causing feature signals that represent its operating status get submerged and further leading to difficulty in engine fault diagnosis. In addition, most of the signals utilized to verify the extraction method are derived from numerical simulation, which are far away from the real engine signals. To address these problems, this paper combines the priority of signal sparse decomposition and engine finite element model to research a novel feature extraction method for engine misfire diagnosis. Firstly, in order to highlight resonance regions related with impact features, the vibration signal is performed with a high-pass filter process. Secondly, the dictionary with clear physical meaning is constructed by the unit impulse function, whose parameters are associated with engine system modal characteristics. Afterwards, the signals that indicate the engine operating status are accurately reconstructed by segmental matching pursuit. Finally, a series of precise simulation signals originated from the engine dynamic finite element model, and experimental signals on the automotive engine are used to verify the proposed method’s effectiveness and antinoise performance. Additionally, comparisons with wavelet decomposition further show the proposed method to be more reliable in engine misfire diagnosis.


Sign in / Sign up

Export Citation Format

Share Document