scholarly journals A Fast and Accurate Algorithm for Nuclei Instance Segmentation in Microscopy Images

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 158679-158689
Author(s):  
Zhiming Cheng ◽  
Aiping Qu
2021 ◽  
Vol 40 (1) ◽  
pp. 154-165
Author(s):  
Dongnan Liu ◽  
Donghao Zhang ◽  
Yang Song ◽  
Fan Zhang ◽  
Lauren O'Donnell ◽  
...  

2021 ◽  
pp. 36-46
Author(s):  
Willard Zamora-Cárdenas ◽  
Mauro Mendez ◽  
Saul Calderon-Ramirez ◽  
Martin Vargas ◽  
Gerardo Monge ◽  
...  

Author(s):  
Junbo Ma ◽  
Oleh Krupa ◽  
Madison Rose Glass ◽  
Carolyn M. McCormick ◽  
David Borland ◽  
...  

Author(s):  
J. Temple Black ◽  
Jose Guerrero

In the SEM, contrast in the image is the result of variations in the volume secondary electron emission and backscatter emission which reaches the detector and serves to intensity modulate the signal for the CRT's. This emission is a function of the accelerating potential, material density, chemistry, crystallography, local charge effects, surface morphology and especially the angle of the incident electron beam with the particular surface site. Aside from the influence of object inclination, the surface morphology is the most important feature In producing contrast. “Specimen collection“ is the name given the shielding of the collector by adjacent parts of the specimen, producing much image contrast. This type of contrast can occur for both secondary and backscatter electrons even though the secondary electrons take curved paths to the detector-collector.Figure 1 demonstrates, in a unique and striking fashion, the specimen collection effect. The subject material here is Armco Iron, 99.85% purity, which was spark machined.


Author(s):  
R. Levi-Setti ◽  
J.M. Chabala ◽  
Y.L. Wang

Finely focused beams extracted from liquid metal ion sources (LMIS) provide a wealth of secondary signals which can be exploited to create high resolution images by the scanning method. The images of scanning ion microscopy (SIM) encompass a variety of contrast mechanisms which we classify into two broad categories: a) Emission contrast and b) Analytical contrast.Emission contrast refers to those mechanisms inherent to the emission of secondaries by solids under ion bombardment. The contrast-carrying signals consist of ion-induced secondary electrons (ISE) and secondary ions (ISI). Both signals exhibit i) topographic emission contrast due to the existence of differential geometric emission and collection effects, ii) crystallographic emission contrast, due to primary ion channeling phenomena and differential oxidation of crystalline surfaces, iii) chemical emission or Z-contrast, related to the dependence of the secondary emission yields on the Z and surface chemical state of the target.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


2003 ◽  
Vol 775 ◽  
Author(s):  
Suk-Ho Choi ◽  
Jun Sung Bae ◽  
Kyung Jung Kim ◽  
Dae Won Moon

AbstractSi/SiO2 multilayers (MLs) have been prepared under different deposition temperatures (TS) by ion beam sputtering. The annealing at 1200°C leads to the formation of Si nanocrystals in the Si layer of MLs. The high resolution transmission electron microscopy images clearly demonstrate the existence of Si nanocrystals, which exhibit photoluminescence (PL) in the visible range when TS is ≥ 300°C. This is attributed to well-separation of nanocrystals in the higher-TS samples, which is thought to be a major cause for reducing non-radiative recombination in the interface between Si nanocrystal and surface oxide. The visible PL spectra are enhanced in its intensity and are shifted to higher energy by increasing TS. These PL behaviours are consistent with the quantum confinement effect of Si nanocrystals.


Sign in / Sign up

Export Citation Format

Share Document