scholarly journals Information Entropy and Optimal Scale Combination in Multi-Scale Covering Decision Systems

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 182908-182917
Author(s):  
Dongxiao Chen ◽  
Jinjin Li ◽  
Rongde Lin ◽  
Yingsheng Chen
Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 290 ◽  
Author(s):  
Ying Chen ◽  
Jin Li ◽  
Jian Huang

In multi-scale information systems, the information is often characterized at multi scales and multi levels. To facilitate the computational process of multi-scale information systems, we employ the matrix method to represent the multi-scale information systems and to select the optimal scale combination of multi-scale decision information systems in this study. To this end, we first describe some important concepts and properties of information systems using some relational matrices. The relational matrix is then introduced into multi-scale information systems, and used to describe some main concepts in systems, including the lower and upper approximate sets and the consistence of systems. Furthermore, from the view of the relation matrix, the scale significance is defined to describe the global optimal scale and the local optimal scale of multi-scale information systems. Finally, the relational matrix is used to compute the scale significance and to construct the optimal scale selection algorithms. The efficiency of these algorithms is examined by several practical examples and experiments.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yue Sun ◽  
Yanze Yu ◽  
Jinhao Guo ◽  
Minghai Zhang

Single-scale frameworks are often used to analyze the habitat selections of species. Research on habitat selection can be significantly improved using multi-scale models that enable greater in-depth analyses of the scale dependence between species and specific environmental factors. In this study, the winter habitat selection of red deer in the Gogostaihanwula Nature Reserve, Inner Mongolia, was studied using a multi-scale model. Each selected covariate was included in multi-scale models at their “characteristic scale”, and we used an all subsets approach and model selection framework to assess habitat selection. The results showed that: (1) Univariate logistic regression analysis showed that the response scale of red deer to environmental factors was different among different covariate. The optimal scale of the single covariate was 800–3200 m, slope (SLP), altitude (ELE), and ratio of deciduous broad-leaved forests were 800 m in large scale, except that the farmland ratio was 200 m in fine scale. The optimal scale of road density and grassland ratio is both 1600 m, and the optimal scale of net forest production capacity is 3200 m; (2) distance to forest edges, distance to cement roads, distance to villages, altitude, distance to all road, and slope of the region were the most important factors affecting winter habitat selection. The outcomes of this study indicate that future studies on the effectiveness of habitat selections will benefit from multi-scale models. In addition to increasing interpretive and predictive capabilities, multi-scale habitat selection models enhance our understanding of how species respond to their environments and contribute to the formulation of effective conservation and management strategies for ungulata.


2021 ◽  
Author(s):  
Yingjie Zhu ◽  
Bin Yang

Abstract Hierarchical structured data are very common for data mining and other tasks in real-life world. How to select the optimal scale combination from a multi-scale decision table is critical for subsequent tasks. At present, the models for calculating the optimal scale combination mainly include lattice model, complement model and stepwise optimal scale selection model, which are mainly based on consistent multi-scale decision tables. The optimal scale selection model for inconsistent multi-scale decision tables has not been given. Based on this, firstly, this paper introduces the concept of complement and lattice model proposed by Li and Hu. Secondly, based on the concept of positive region consistency of inconsistent multi-scale decision tables, the paper proposes complement model and lattice model based on positive region consistent and gives the algorithm. Finally, some numerical experiments are employed to verify that the model has the same properties in processing inconsistent multi-scale decision tables as the complement model and lattice model in processing consistent multi-scale decision tables. And for the consistent multi-scale decision table, the same results can be obtained by using the model based on positive region consistent. However, the lattice model based on positive region consistent is more time-consuming and costly. The model proposed in this paper provides a new theoretical method for the optimal scale combination selection of the inconsistent multi-scale decision table.


Author(s):  
T. Kavzoglu ◽  
M. Yildiz Erdemir ◽  
H. Tonbul

Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1852 ◽  
Author(s):  
Junjie Zhou ◽  
Hongqiang Wei ◽  
Guiyun Zhou ◽  
Lihui Song

The separation of leaf and wood points is an essential preprocessing step for extracting many of the parameters of a tree from terrestrial laser scanning data. The multi-scale method and the optimal scale method are two of the most widely used separation methods. In this study, we extend the optimal scale method to the multi-optimal-scale method, adaptively selecting multiple optimal scales for each point in the tree point cloud to increase the distinctiveness of extracted geometric features. Compared with the optimal scale method, our method achieves higher separation accuracy. Compared with the multi-scale method, our method achieves more stable separation accuracy with a limited number of optimal scales. The running time of our method is greatly reduced when the optimization strategy is applied.


Author(s):  
Yaling Xun ◽  
Qingxia Yin ◽  
Jifu Zhang ◽  
Haifeng Yang ◽  
Xiaohui Cui

Sign in / Sign up

Export Citation Format

Share Document