scholarly journals REF-Net: Robust, Efficient, and Fast Network for Semantic Segmentation Applications Using Devices With Limited Computational Resources

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 15084-15098
Author(s):  
Bekhzod Olimov ◽  
Jeonghong Kim ◽  
Anand Paul
Author(s):  
C.L. Woodcock

Despite the potential of the technique, electron tomography has yet to be widely used by biologists. This is in part related to the rather daunting list of equipment and expertise that are required. Thanks to continuing advances in theory and instrumentation, tomography is now more feasible for the non-specialist. One barrier that has essentially disappeared is the expense of computational resources. In view of this progress, it is time to give more attention to practical issues that need to be considered when embarking on a tomographic project. The following recommendations and comments are derived from experience gained during two long-term collaborative projects.Tomographic reconstruction results in a three dimensional description of an individual EM specimen, most commonly a section, and is therefore applicable to problems in which ultrastructural details within the thickness of the specimen are obscured in single micrographs. Information that can be recovered using tomography includes the 3D shape of particles, and the arrangement and dispostion of overlapping fibrous and membranous structures.


2018 ◽  
Vol 11 (6) ◽  
pp. 304
Author(s):  
Javier Pinzon-Arenas ◽  
Robinson Jimenez-Moreno ◽  
Ruben Hernandez-Beleno

2019 ◽  
Vol 20 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Lin Ning ◽  
Bifang He ◽  
Peng Zhou ◽  
Ratmir Derda ◽  
Jian Huang

Background:Peptide-Fc fusion drugs, also known as peptibodies, are a category of biological therapeutics in which the Fc region of an antibody is genetically fused to a peptide of interest. However, to develop such kind of drugs is laborious and expensive. Rational design is urgently needed.Methods:We summarized the key steps in peptide-Fc fusion technology and stressed the main computational resources, tools, and methods that had been used in the rational design of peptide-Fc fusion drugs. We also raised open questions about the computer-aided molecular design of peptide-Fc.Results:The design of peptibody consists of four steps. First, identify peptide leads from native ligands, biopanning, and computational design or prediction. Second, select the proper Fc region from different classes or subclasses of immunoglobulin. Third, fuse the peptide leads and Fc together properly. At last, evaluate the immunogenicity of the constructs. At each step, there are quite a few useful resources and computational tools.Conclusion:Reviewing the molecular design of peptibody will certainly help make the transition from peptide leads to drugs on the market quicker and cheaper.


Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 9-11
Author(s):  
Tomohiro Fukuda

Mixed reality (MR) is rapidly becoming a vital tool, not just in gaming, but also in education, medicine, construction and environmental management. The term refers to systems in which computer-generated content is superimposed over objects in a real-world environment across one or more sensory modalities. Although most of us have heard of the use of MR in computer games, it also has applications in military and aviation training, as well as tourism, healthcare and more. In addition, it has the potential for use in architecture and design, where buildings can be superimposed in existing locations to render 3D generations of plans. However, one major challenge that remains in MR development is the issue of real-time occlusion. This refers to hiding 3D virtual objects behind real articles. Dr Tomohiro Fukuda, who is based at the Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering at Osaka University in Japan, is an expert in this field. Researchers, led by Dr Tomohiro Fukuda, are tackling the issue of occlusion in MR. They are currently developing a MR system that realises real-time occlusion by harnessing deep learning to achieve an outdoor landscape design simulation using a semantic segmentation technique. This methodology can be used to automatically estimate the visual environment prior to and after construction projects.


2020 ◽  
Author(s):  
Dianbo Liu

BACKGROUND Applications of machine learning (ML) on health care can have a great impact on people’s lives. At the same time, medical data is usually big, requiring a significant amount of computational resources. Although it might not be a problem for wide-adoption of ML tools in developed nations, availability of computational resource can very well be limited in third-world nations and on mobile devices. This can prevent many people from benefiting of the advancement in ML applications for healthcare. OBJECTIVE In this paper we explored three methods to increase computational efficiency of either recurrent neural net-work(RNN) or feedforward (deep) neural network (DNN) while not compromising its accuracy. We used in-patient mortality prediction as our case analysis upon intensive care dataset. METHODS We reduced the size of RNN and DNN by applying pruning of “unused” neurons. Additionally, we modified the RNN structure by adding a hidden-layer to the RNN cell but reduce the total number of recurrent layers to accomplish a reduction of total parameters in the network. Finally, we implemented quantization on DNN—forcing the weights to be 8-bits instead of 32-bits. RESULTS We found that all methods increased implementation efficiency–including training speed, memory size and inference speed–without reducing the accuracy of mortality prediction. CONCLUSIONS This improvements allow the implementation of sophisticated NN algorithms on devices with lower computational resources.


Author(s):  
Mhafuzul Islam ◽  
Mashrur Chowdhury ◽  
Hongda Li ◽  
Hongxin Hu

Vision-based navigation of autonomous vehicles primarily depends on the deep neural network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras, and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems in the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adverse inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris or roadblocks. In this study, we first introduce a hazardous roadway environment that can compromise the DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering wheel angle, which could cause crashes resulting in fatality or injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazard, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system, including hazardous object detection and semantic segmentation, improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared with the traditional DNN-based autonomous vehicle driving system.


Sign in / Sign up

Export Citation Format

Share Document