Face Completion Using Semantic Segmentation and Geometric Features

2018 ◽  
Vol 11 (6) ◽  
pp. 304
Author(s):  
Javier Pinzon-Arenas ◽  
Robinson Jimenez-Moreno ◽  
Ruben Hernandez-Beleno
2020 ◽  
Vol 12 (8) ◽  
pp. 1289
Author(s):  
Stefan Bachhofner ◽  
Ana-Maria Loghin ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Michael Hornacek ◽  
...  

We studied the applicability of point clouds derived from tri-stereo satellite imagery for semantic segmentation for generalized sparse convolutional neural networks by the example of an Austrian study area. We examined, in particular, if the distorted geometric information, in addition to color, influences the performance of segmenting clutter, roads, buildings, trees, and vehicles. In this regard, we trained a fully convolutional neural network that uses generalized sparse convolution one time solely on 3D geometric information (i.e., 3D point cloud derived by dense image matching), and twice on 3D geometric as well as color information. In the first experiment, we did not use class weights, whereas in the second we did. We compared the results with a fully convolutional neural network that was trained on a 2D orthophoto, and a decision tree that was once trained on hand-crafted 3D geometric features, and once trained on hand-crafted 3D geometric as well as color features. The decision tree using hand-crafted features has been successfully applied to aerial laser scanning data in the literature. Hence, we compared our main interest of study, a representation learning technique, with another representation learning technique, and a non-representation learning technique. Our study area is located in Waldviertel, a region in Lower Austria. The territory is a hilly region covered mainly by forests, agriculture, and grasslands. Our classes of interest are heavily unbalanced. However, we did not use any data augmentation techniques to counter overfitting. For our study area, we reported that geometric and color information only improves the performance of the Generalized Sparse Convolutional Neural Network (GSCNN) on the dominant class, which leads to a higher overall performance in our case. We also found that training the network with median class weighting partially reverts the effects of adding color. The network also started to learn the classes with lower occurrences. The fully convolutional neural network that was trained on the 2D orthophoto generally outperforms the other two with a kappa score of over 90% and an average per class accuracy of 61%. However, the decision tree trained on colors and hand-crafted geometric features has a 2% higher accuracy for roads.


Author(s):  
K. Chen ◽  
M. Weinmann ◽  
X. Gao ◽  
M. Yan ◽  
S. Hinz ◽  
...  

In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.


Author(s):  
K. Chen ◽  
M. Weinmann ◽  
X. Sun ◽  
M. Yan ◽  
S. Hinz ◽  
...  

<p><strong>Abstract.</strong> In this paper, we address the semantic segmentation of aerial imagery based on the use of multi-modal data given in the form of true orthophotos and the corresponding Digital Surface Models (DSMs). We present the Deeply-supervised Shuffling Convolutional Neural Network (DSCNN) representing a multi-scale extension of the Shuffling Convolutional Neural Network (SCNN) with deep supervision. Thereby, we take the advantage of the SCNN involving the shuffling operator to effectively upsample feature maps and then fuse multiscale features derived from the intermediate layers of the SCNN, which results in the Multi-scale Shuffling Convolutional Neural Network (MSCNN). Based on the MSCNN, we derive the DSCNN by introducing additional losses into the intermediate layers of the MSCNN. In addition, we investigate the impact of using different sets of hand-crafted radiometric and geometric features derived from the true orthophotos and the DSMs on the semantic segmentation task. For performance evaluation, we use a commonly used benchmark dataset. The achieved results reveal that both multi-scale fusion and deep supervision contribute to an improvement in performance. Furthermore, the use of a diversity of hand-crafted radiometric and geometric features as input for the DSCNN does not provide the best numerical results, but smoother and improved detections for several objects.</p>


Author(s):  
M. Weinmann ◽  
M. A. Jäger ◽  
S. Wursthorn ◽  
B. Jutzi ◽  
M. Weinmann ◽  
...  

Abstract. 3D indoor mapping and scene understanding have seen tremendous progress in recent years due to the rapid development of sensor systems, reconstruction techniques and semantic segmentation approaches. However, the quality of the acquired data strongly influences the accuracy of both reconstruction and segmentation. In this paper, we direct our attention to the evaluation of the mapping capabilities of the Microsoft HoloLens in comparison to high-quality TLS systems with respect to 3D indoor mapping, feature extraction and semantic segmentation. We demonstrate how a set of rather interpretable low-level geometric features and the resulting semantic segmentation achieved with a Random Forest classifier applied on these features are affected by the quality of the acquired data. The achieved results indicate that, while allowing for a fast acquisition of room geometries, the HoloLens provides data with sufficient accuracy for a wide range of applications.


2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 9-11
Author(s):  
Tomohiro Fukuda

Mixed reality (MR) is rapidly becoming a vital tool, not just in gaming, but also in education, medicine, construction and environmental management. The term refers to systems in which computer-generated content is superimposed over objects in a real-world environment across one or more sensory modalities. Although most of us have heard of the use of MR in computer games, it also has applications in military and aviation training, as well as tourism, healthcare and more. In addition, it has the potential for use in architecture and design, where buildings can be superimposed in existing locations to render 3D generations of plans. However, one major challenge that remains in MR development is the issue of real-time occlusion. This refers to hiding 3D virtual objects behind real articles. Dr Tomohiro Fukuda, who is based at the Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering at Osaka University in Japan, is an expert in this field. Researchers, led by Dr Tomohiro Fukuda, are tackling the issue of occlusion in MR. They are currently developing a MR system that realises real-time occlusion by harnessing deep learning to achieve an outdoor landscape design simulation using a semantic segmentation technique. This methodology can be used to automatically estimate the visual environment prior to and after construction projects.


Sign in / Sign up

Export Citation Format

Share Document