scholarly journals A Novel Sub-Bottom Profiler Seabed Sediment Classification Method Based on BPNN with Biot-Stoll Model and Attenuation-Based Model

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mingke Li ◽  
Quan Tao ◽  
Guangchao Hou ◽  
Jingsheng Zhai
2021 ◽  
Vol 9 (5) ◽  
pp. 508
Author(s):  
Xiaochen Yu ◽  
Jingsheng Zhai ◽  
Bo Zou ◽  
Qi Shao ◽  
Guangchao Hou

The modern discrimination of sediment is based on acoustic intensity (backscatter) information from high-resolution multibeam echo-sounder systems (MBES). The backscattering intensity, varying with the angle of incidence, reveals the characteristics of seabed sediment. In this study, we propose a novel unsupervised acoustic sediment classification method based on the K-medoids algorithm using multibeam backscattering intensity data. In this method, we use the Lurton parameters model, which is the relationship between the backscattering intensity and incidence, to obtain the backscattering angle corresponding curve, and we use the genetic algorithm to fit the curve by the least-squares method. After extracting the four relevant parameters of the model when the ideal fitting effect was achieved, we input the characteristic parameters obtained from the fitting to the K-medoids clustering model. To validate the proposed classification method, we compare it with the self-organizing map (SOM) neural network classification method under the same parameter settings. The results of the experiment show that when the seabed sediment category is less than or equal to 3, the results of the K-medoids algorithm and the SOM neural network are approximately identical. As the sediment category increases, the SOM neural network shows instability, and it is impossible to see the clear boundaries of the seabed sediment, while the K-medoids category is 5 and the seabed sediment classification is correct. After comparing with field in situ seabed sediment sampling along the MBES survey line, the sediment classification method based on K-medoids is consistent with the distribution of the field sediment sampling. The classification accuracies for bedrock, sandy clay, and silty sand are all above 90%; those for gravel and clay are nearly 80%, and the overall accuracy reaches 89.7%.


2021 ◽  
Vol 149 ◽  
pp. 104713
Author(s):  
Fengfan Wang ◽  
Jia Yu ◽  
Zhijie Liu ◽  
Min Kong ◽  
Yunfan Wu

Author(s):  
S. A. Samsudin ◽  
R. C. Hasan

Recently, there have been many debates to analyse backscatter data from multibeam echosounder system (MBES) for seafloor classifications. Among them, two common methods have been used lately for seafloor classification; (1) signal-based classification method which using Angular Range Analysis (ARA) and Image-based texture classification method which based on derived Grey Level Co-occurrence Matrices (GLCMs). Although ARA method could predict sediment types, its low spatial resolution limits its use with high spatial resolution dataset. Texture layers from GLCM on the other hand does not predict sediment types, but its high spatial resolution can be useful for image analysis. The objectives of this study are; (1) to investigate the correlation between MBES derived backscatter mosaic textures with seafloor sediment type derived from ARA method, and (2) to identify which GLCM texture layers have high similarities with sediment classification map derived from signal-based classification method. The study area was located at Tawau, covers an area of 4.7&amp;thinsp;km<sup>2</sup>, situated off the channel in the Celebes Sea between Nunukan Island and Sebatik Island, East Malaysia. First, GLCM layers were derived from backscatter mosaic while sediment types (i.e. sediment map with classes) was also constructed using ARA method. Secondly, Principal Component Analysis (PCA) was used determine which GLCM layers contribute most to the variance (i.e. important layers). Finally, K-Means clustering algorithm was applied to the important GLCM layers and the results were compared with classes from ARA. From the results, PCA has identified that GLCM layers of Correlation, Entropy, Contrast and Mean contributed to the 98.77&amp;thinsp;% of total variance. Among these layers, GLCM Mean showed a good agreement with sediment classes from ARA sediment map. This study has demonstrated different texture layers have different characterisation factors for sediment classification and proper analysis is needed before using these layers with any classification technique.


Sign in / Sign up

Export Citation Format

Share Document