scholarly journals Image Reconstruction Using Variable Exponential Function Regularization for Wide-Field Polarization Modulation Imaging

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 55606-55629
Author(s):  
Qiong Wu ◽  
Kun Gao ◽  
Mu Li ◽  
Zhenzhou Zhang ◽  
Zizheng Hua ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Luzhe Huang ◽  
Hanlong Chen ◽  
Yilin Luo ◽  
Yair Rivenson ◽  
Aydogan Ozcan

AbstractVolumetric imaging of samples using fluorescence microscopy plays an important role in various fields including physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that uses 2D images that are sparsely captured by a standard wide-field fluorescence microscope at arbitrary axial positions within the sample volume. Through a recurrent convolutional neural network, which we term as Recurrent-MZ, 2D fluorescence information from a few axial planes within the sample is explicitly incorporated to digitally reconstruct the sample volume over an extended depth-of-field. Using experiments on C. elegans and nanobead samples, Recurrent-MZ is demonstrated to significantly increase the depth-of-field of a 63×/1.4NA objective lens, also providing a 30-fold reduction in the number of axial scans required to image the same sample volume. We further illustrated the generalization of this recurrent network for 3D imaging by showing its resilience to varying imaging conditions, including e.g., different sequences of input images, covering various axial permutations and unknown axial positioning errors. We also demonstrated wide-field to confocal cross-modality image transformations using Recurrent-MZ framework and performed 3D image reconstruction of a sample using a few wide-field 2D fluorescence images as input, matching confocal microscopy images of the same sample volume. Recurrent-MZ demonstrates the first application of recurrent neural networks in microscopic image reconstruction and provides a flexible and rapid volumetric imaging framework, overcoming the limitations of current 3D scanning microscopy tools.


2011 ◽  
Vol 19 (3) ◽  
Author(s):  
C. Zenkova ◽  
M. Gorsky ◽  
N. Gorodynska

AbstractThe use of the method of field polarization modulation for defining the degree of coherence of circularly polarized waves is offered. The role of the reference circularly polarized wave in transforming the spatial distribution of polarization into the depth of visibility modulation of the resulting distribution, which can be metrologically estimated and analyzed, is demonstrated.


2021 ◽  
Author(s):  
Kamdin Mirsanaye ◽  
Leonardo Uribe Castano ◽  
Yasmeen Kamaliddin ◽  
Ahmad Golaraei ◽  
Lukas Kontenis ◽  
...  

Retina ◽  
2014 ◽  
Vol 34 (11) ◽  
pp. 2208-2217 ◽  
Author(s):  
Christopher Schütze ◽  
Markus Ritter ◽  
Robert Blum ◽  
Stefan Zotter ◽  
Bernhard Baumann ◽  
...  

2019 ◽  
Author(s):  
Karl Zhanghao ◽  
Wenhui Liu ◽  
Meiqi Li ◽  
Xingye Chen ◽  
Chunyan Shan ◽  
...  

AbstractThe orientation and wobbling behavior of the fluorescent dipoles are of great significance in revealing the structure and state of cells. Due to the poor optical sectioning capability of wide-field microscopy, the polarization modulation signals are susceptible to the neighboring fluorophores. The missing cone of wide field optical transfer function induces vast out-of-focus background, resulting in biased polarization orientation and decrease polarization factor. Here, we apply polarized structured illumination to achieve polarization modulation imaging with optical sectioning, and simultaneously measure the lipid polarity with two-color ratiometric imaging. Our results demonstrate a significant increase in measurement accuracy of not only the dipole orientations but also the wobbling behavior of the ensemble dipole. Compared to the conventional confocal polarization imaging, our method obtains an order-of-magnitude faster imaging speed, capturing the fast dynamics of subcellular structures in live cells.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andreas Markwirth ◽  
Mario Lachetta ◽  
Viola Mönkemöller ◽  
Rainer Heintzmann ◽  
Wolfgang Hübner ◽  
...  

Abstract Super-resolved structured illumination microscopy (SR-SIM) is among the fastest fluorescence microscopy techniques capable of surpassing the optical diffraction limit. Current custom-build instruments are able to deliver two-fold resolution enhancement with high acquisition speed. SR-SIM is usually a two-step process, with raw-data acquisition and subsequent, time-consuming post-processing for image reconstruction. In contrast, wide-field and (multi-spot) confocal techniques produce high-resolution images instantly. Such immediacy is also possible with SR-SIM, by tight integration of a video-rate capable SIM with fast reconstruction software. Here we present instant SR-SIM by VIGOR (Video-rate Immediate GPU-accelerated Open-Source Reconstruction). We demonstrate multi-color SR-SIM at video frame-rates, with less than 250 ms delay between measurement and reconstructed image display. This is achieved by modifying and extending high-speed SR-SIM image acquisition with a new, GPU-enhanced, network-enabled image-reconstruction software. We demonstrate high-speed surveying of biological samples in multiple colors and live imaging of moving mitochondria as an example of intracellular dynamics.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei Luo ◽  
Yibo Zhang ◽  
Zoltán Göröcs ◽  
Alborz Feizi ◽  
Aydogan Ozcan

Abstract To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.


Sign in / Sign up

Export Citation Format

Share Document