scholarly journals Spatiotemporal Variability of Velocity and Influence of Glacier Thickness Using Landsat Imagery: Hunza River Basin, Karakoram Range (1993–2019)

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xinyue Wang ◽  
Donghui Shangguan ◽  
Da Li ◽  
Muhammad Navved Anjum
2020 ◽  
Vol 102 (3) ◽  
pp. 939-964
Author(s):  
Glauciene Justino Ferreira da Silva ◽  
Nádja Melo de Oliveira ◽  
Celso Augusto Guimarães Santos ◽  
Richarde Marques da Silva

2013 ◽  
Vol 52 (4) ◽  
pp. 802-818 ◽  
Author(s):  
Seong-Sim Yoon ◽  
Deg-Hyo Bae

AbstractMore than 70% of South Korea has mountainous terrain, which leads to significant spatiotemporal variability of rainfall. The country is exposed to the risk of flash floods owing to orographic rainfall. Rainfall observations are important in mountainous regions because flood control measures depend strongly on rainfall data. In particular, radar rainfall data are useful in these regions because of the limitations of rain gauges. However, radar rainfall data include errors despite the development of improved estimation techniques for their calculation. Further, the radar does not provide accurate data during heavy rainfall in mountainous areas. This study presents a radar rainfall adjustment method that considers the elevation in mountainous regions. Gauge rainfall and radar rainfall field data are modified by using standardized ordinary cokriging considering the elevation, and the conditional merging technique is used for combining the two types of data. For evaluating the proposed technique, the Han River basin was selected; a high correlation between rainfall and elevation can be seen in this basin. Further, the proposed technique was compared with the mean field bias and original conditional merging techniques. Comparison with kriged rainfall showed that the proposed method has a lesser tendency to oversmooth the rainfall distribution when compared with the other methods, and the optimal mean areal rainfall is very similar to the value obtained using gauges. It reveals that the proposed method can be applied to an area with significantly varying elevation, such as the Han River basin, to obtain radar rainfall data of high accuracy.


2021 ◽  
Author(s):  
Sajid Ali ◽  
Garee Khan ◽  
Wajid Hassan ◽  
Javed Akhter Qureshi ◽  
Iram Bano

Abstract Ice masses and snow of Hunza River Basin (HRB) are an important primary source of fresh water and lifeline for downstream inhabitants. Changing climatic conditions seriously put an impact on these available ice and snow masses. These glaciers may affect downstream population by glacial lake outburst floods (GLOF) and surge events due to climatic variation. So, monitoring of these glaciers and available ice masses are important. This research delivers an approach for selected glaciers of the Hunza river basin. An attempt is made in this study using Landsat (OLI, ETM, ETM+, TM), digital elevation model (DEM), Geographic Information System and Remote Sensing techniques (RS&GIS) techniques. We delineated 27 glaciers within HRB from the period of 1990-2018. These glaciers' total area is about 2589.75 ±86km 2 in 1990 and about 2565.12 ±68km 2 in 2018. Our results revealed that from 2009 to 2015, glacier coverage of HRB advanced with a mean annual advance rate of 2.22±0.1 km 2 a -1 . Conversely, from 1994 to 1999, the strongest reduction in glacier area with a mean rate of - 3.126±0.3km 2 a -1 is recorded. The glaciers of HRB are relatively stable compared to Hindukush, Himalayan and Tibetan Plateau (TP) region of the world. The steep slope glacier's retreat rate is more than that of gentle slope glaciers, and the glaciers below elevation of 5000 m above sea level change significantly. Based on climate data from 1995-2018, HRB shows a decreasing trend in temperature and increasing precipitation. The glacier area's overall retreat is due to an increase in summer temperature while the glacier advancement is induced possibly by winter and autumn precipitation.


2013 ◽  
Vol 24 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Shiqiang Zhang ◽  
Min Xu ◽  
Junli Xu ◽  
Qiudong Zhao ◽  
Stefan Hagemann
Keyword(s):  

2020 ◽  
Vol 102 (3) ◽  
pp. 965-965
Author(s):  
Glauciene Justino Ferreira da Silva ◽  
Nádja Melo de Oliveira ◽  
Celso Augusto Guimarães Santos ◽  
Richarde Marques da Silva

2019 ◽  
Vol 11 (10) ◽  
pp. 1164
Author(s):  
Bei Li ◽  
Yi-Chi Zhang ◽  
Ping Wang ◽  
Chao-Yang Du ◽  
Jing-Jie Yu

Quantifying terminal-lake dynamics is crucial for understanding water-ecosystem-economy relationship across endorheic river basins in arid environments. In this study, the spatio-temporal variations in terminal lakes of the lower Heihe River Basin were investigated for the first time since the Ecological Water Diversion Project commenced in 2000. The lake area and corresponding water consumption were determined with 248 Landsat images. Vital recovery of lakes occurred two years after the implementation of the project, and the total lake area increased by 382.6%, from 30.7 to 148.2 km2, during 2002–2017. East Juyan Lake (EJL) was first restored as a project target and subsequently reached a maximum area of 70.1 km2. Water dispersion was initiated in 2003, with the East river prioritized for restoration. Swan Lake in the East river enlarged to 67.7 km2 by 2017, while the other four lakes temporarily existed or maintained an area < 7 km2, such as West Juyan Lake. Water consumed by lakes increased synchronously with lake area. The average water consumption of the six lakes was 1.03 × 108 m3/year, with 63% from EJL. The increasing terminal lakes; however, highlight the seasonal competition for water use between riparian vegetation and lake ecosystems in water-limited areas.


Sign in / Sign up

Export Citation Format

Share Document