scholarly journals Two-dimensional Whole Space Transient Electromagnetic Forward Response of Magnetic Moment in Arbitrary Direction

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zhaoqiao Zhang ◽  
Shengdong Liu
2021 ◽  
pp. 1-1
Author(s):  
Jiabao Sun ◽  
Shanshan Liu ◽  
Faxian Xiu ◽  
Wenqing Liu

1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745015
Author(s):  
V. V. Kabanov

Energy spectrum of electrons (holes) doped into two-dimensional (2D) antiferromagnetic (AF) semiconductors is quantized in an external magnetic field of arbitrary direction. A peculiar dependence of de Haas–van Alphen (dHvA) magneto-oscillation amplitudes on the azimuthal in-plane angle from the magnetization direction and on the polar angle from the out-of-plane direction is found. The angular dependence of the amplitude is different if the measurements are performed in the field above and below of the spin-flop field.


2017 ◽  
Vol 31 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Xi Chen ◽  
Ming-Gang Xia ◽  
Yang Zhang ◽  
...  

First-principles study based on density functional theory has been employed to investigate width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4–6 (the numbers of zigzag Mo–S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S–Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S–Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S–Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 63415-63425 ◽  
Author(s):  
Jianghao Chang ◽  
Jingcun Yu ◽  
Juanjuan Li ◽  
Guoqiang Xue ◽  
Reza Malekian ◽  
...  

The diffraction by a conducting wedge of a transient electromagnetic disturbance in the form of a plane wave discontinuity having arbitrary polarization and direction of propagation is reduced to a pair of two-dimensional scalar problems. The solution to one of these is identical with that previously obtained for the analogous acoustical problem, while the second is attacked in a similar manner, using a Tschplygin transformation to reduce the boundary value problem to one in potential theory, which is then solved by classical means.


Geophysics ◽  
1986 ◽  
Vol 51 (7) ◽  
pp. 1450-1461 ◽  
Author(s):  
Y. Goldman ◽  
C. Hubans ◽  
S. Nicoletis ◽  
S. Spitz

We present a numerical method for solving Maxwell’s equations in the case of an arbitrary two‐dimensional resistivity distribution excited by an infinite current line. The electric field is computed directly in the time domain. The computations are carried out in the lower half‐space only because exact boundary conditions are used on the free surface. The algorithm follows the finite‐element approach, which leads (after space discretization) to an equation system with a sparse matrix. Time stepping is done with an implicit time scheme. At each time step, the solution of the equation system is provided by the fast system ICCG(0). The resulting algorithm produces good results even when large resistivity contrasts are involved. We present a test of the algorithm’s performance in the case of a homogeneous earth. With a reasonable grid, the relative error with respect to the analytical solution does not exceed 1 percent, even 2 s after the source is turned off.


Sign in / Sign up

Export Citation Format

Share Document