scholarly journals Joint Disparity Estimation and Pseudo NIR Generation from Cross Spectral Image Pairs

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Zenghui Duan ◽  
Cheolkon Jung
2012 ◽  
Vol 22 (03) ◽  
pp. 1250007 ◽  
Author(s):  
KARL PAUWELS ◽  
MARC M. VAN HULLE

We present a hybrid neural network architecture that supports the estimation of binocular disparity in a cyclopean, head-centric coordinate system without explicitly establishing retinal correspondences. Instead the responses of binocular energy neurons are gain-modulated by oculomotor signals. The network can handle the full six degrees of freedom of binocular gaze and operates directly on image pairs of possibly varying contrast. Furthermore, we show that in the absence of an oculomotor signal the same architecture is capable of estimating the epipolar geometry directly from the population response. The increased complexity of the scenarios considered in this work provides an important step towards the application of computational models centered on gain modulation mechanisms in real-world robotic applications. The proposed network is shown to outperform a standard computer vision technique on a disparity estimation task involving real-world stereo images.


Author(s):  
Mingyang Liang ◽  
Xiaoyang Guo ◽  
Hongsheng Li ◽  
Xiaogang Wang ◽  
You Song

Unsupervised cross-spectral stereo matching aims at recovering disparity given cross-spectral image pairs without any depth or disparity supervision. The estimated depth provides additional information complementary to original images, which can be helpful for other vision tasks such as tracking, recognition and detection. However, there are large appearance variations between images from different spectral bands, which is a challenge for cross-spectral stereo matching. Existing deep unsupervised stereo matching methods are sensitive to the appearance variations and do not perform well on cross-spectral data. We propose a novel unsupervised crossspectral stereo matching framework based on image-to-image translation. First, a style adaptation network transforms images across different spectral bands by cycle consistency and adversarial learning, during which appearance variations are minimized. Then, a stereo matching network is trained with image pairs from the same spectra using view reconstruction loss. At last, the estimated disparity is utilized to supervise the spectral translation network in an end-to-end way. Moreover, a novel style adaptation network F-cycleGAN is proposed to improve the robustness of spectral translation. Our method can tackle appearance variations and enhance the robustness of unsupervised cross-spectral stereo matching. Experimental results show that our method achieves good performance without using depth supervision or explicit semantic information.


1994 ◽  
Author(s):  
A. J. Chen ◽  
C. H. Liu ◽  
J. Y. Rau ◽  
Lin-Chi Chen

Author(s):  
Cristhian A. Aguilera ◽  
Angel D. Sappa ◽  
Cristhian Aguilera ◽  
Ricardo Toledo

This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where for each matching pair there are always two possible non-matching patches; one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.


2020 ◽  
Vol 2020 (8) ◽  
pp. 114-1-114-7
Author(s):  
Bryan Blakeslee ◽  
Andreas Savakis

Change detection in image pairs has traditionally been a binary process, reporting either “Change” or “No Change.” In this paper, we present LambdaNet, a novel deep architecture for performing pixel-level directional change detection based on a four class classification scheme. LambdaNet successfully incorporates the notion of “directional change” and identifies differences between two images as “Additive Change” when a new object appears, “Subtractive Change” when an object is removed, “Exchange” when different objects are present in the same location, and “No Change.” To obtain pixel annotated change maps for training, we generated directional change class labels for the Change Detection 2014 dataset. Our tests illustrate that LambdaNet would be suitable for situations where the type of change is unstructured, such as change detection scenarios in satellite imagery.


2020 ◽  
Vol 64 (2) ◽  
pp. 20506-1-20506-7
Author(s):  
Min Zhu ◽  
Rongfu Zhang ◽  
Pei Ma ◽  
Xuedian Zhang ◽  
Qi Guo

Abstract Three-dimensional (3D) reconstruction is extensively used in microscopic applications. Reducing excessive error points and achieving accurate matching of weak texture regions have been the classical challenges for 3D microscopic vision. A Multi-ST algorithm was proposed to improve matching accuracy. The process is performed in two main stages: scaled microscopic images and regularized cost aggregation. First, microscopic image pairs with different scales were extracted according to the Gaussian pyramid criterion. Second, a novel cost aggregation approach based on the regularized multi-scale model was implemented into all scales to obtain the final cost. To evaluate the performances of the proposed Multi-ST algorithm and compare different algorithms, seven groups of images from the Middlebury dataset and four groups of experimental images obtained by a binocular microscopic system were analyzed. Disparity maps and reconstruction maps generated by the proposed approach contained more information and fewer outliers or artifacts. Furthermore, 3D reconstruction of the plug gauges using the Multi-ST algorithm showed that the error was less than 0.025 mm.


2013 ◽  
Vol 32 (6) ◽  
pp. 1856-1859
Author(s):  
Xiao-wei SONG ◽  
Lei YANG ◽  
Zhong LIU ◽  
Liang LIAO

2020 ◽  
Vol 12 (3) ◽  
pp. 371 ◽  
Author(s):  
Sahar Dehnavi ◽  
Yasser Maghsoudi ◽  
Klemen Zakšek ◽  
Mohammad Javad Valadan Zoej ◽  
Gunther Seckmeyer ◽  
...  

Due to the considerable impact of clouds on the energy balance in the atmosphere and on the earth surface, they are of great importance for various applications in meteorology or remote sensing. An important aspect of the cloud research studies is the detection of cloudy pixels from the processing of satellite images. In this research, we investigated a stereographic method on a new set of Meteosat images, namely the combination of the high resolution visible (HRV) channel of the Meteosat-8 Indian Ocean Data Coverage (IODC) as a stereo pair with the HRV channel of the Meteosat Second Generation (MSG) Meteosat-10 image at 0° E. In addition, an approach based on the outputs from stereo analysis was proposed to detect cloudy pixels. This approach is introduced with a 2D-scatterplot based on the parallax value and the minimum intersection distance. The mentioned scatterplot was applied to determine/detect cloudy pixels in various image subsets with different amounts of cloud cover. Apart from the general advantage of the applied stereography method, which only depends on geometric relationships, the cloud detection results are also improved because: (1) The stereo pair is the HRV bands of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor, with the highest spatial resolution available from the Meteosat geostationary platform; and (2) the time difference between the image pairs is nearly 5 s, which improves the matching results and also decreases the effect of cloud movements. In order to prove this improvement, the results of this stereo-based approach were compared with three different reflectance-based target detection techniques, including the adaptive coherent estimator (ACE), constrained energy minimization (CEM), and matched filter (MF). The comparison of the receiver operating characteristics (ROC) detection curves and the area under these curves (AUC) showed better detection results with the proposed method. The AUC value was 0.79, 0.90, 0.90, and 0.93 respectively for ACE, CEM, MF, and the proposed stereo-based detection approach. The results of this research shall enable a more realistic modelling of down-welling solar irradiance in the future.


Author(s):  
Jin Zhou ◽  
Qing Zhang ◽  
Jian-Hao Fan ◽  
Wei Sun ◽  
Wei-Shi Zheng

AbstractRecent image aesthetic assessment methods have achieved remarkable progress due to the emergence of deep convolutional neural networks (CNNs). However, these methods focus primarily on predicting generally perceived preference of an image, making them usually have limited practicability, since each user may have completely different preferences for the same image. To address this problem, this paper presents a novel approach for predicting personalized image aesthetics that fit an individual user’s personal taste. We achieve this in a coarse to fine manner, by joint regression and learning from pairwise rankings. Specifically, we first collect a small subset of personal images from a user and invite him/her to rank the preference of some randomly sampled image pairs. We then search for the K-nearest neighbors of the personal images within a large-scale dataset labeled with average human aesthetic scores, and use these images as well as the associated scores to train a generic aesthetic assessment model by CNN-based regression. Next, we fine-tune the generic model to accommodate the personal preference by training over the rankings with a pairwise hinge loss. Experiments demonstrate that our method can effectively learn personalized image aesthetic preferences, clearly outperforming state-of-the-art methods. Moreover, we show that the learned personalized image aesthetic benefits a wide variety of applications.


Sign in / Sign up

Export Citation Format

Share Document