scholarly journals Multi-task neural networks for personalized pain recognition from physiological signals

Author(s):  
Daniel Lopez-Martinez ◽  
Rosalind Picard
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2381
Author(s):  
Jaewon Lee ◽  
Hyeonjeong Lee ◽  
Miyoung Shin

Mental stress can lead to traffic accidents by reducing a driver’s concentration or increasing fatigue while driving. In recent years, demand for methods to detect drivers’ stress in advance to prevent dangerous situations increased. Thus, we propose a novel method for detecting driving stress using nonlinear representations of short-term (30 s or less) physiological signals for multimodal convolutional neural networks (CNNs). Specifically, from hand/foot galvanic skin response (HGSR, FGSR) and heart rate (HR) short-term input signals, first, we generate corresponding two-dimensional nonlinear representations called continuous recurrence plots (Cont-RPs). Second, from the Cont-RPs, we use multimodal CNNs to automatically extract FGSR, HGSR, and HR signal representative features that can effectively differentiate between stressed and relaxed states. Lastly, we concatenate the three extracted features into one integrated representation vector, which we feed to a fully connected layer to perform classification. For the evaluation, we use a public stress dataset collected from actual driving environments. Experimental results show that the proposed method demonstrates superior performance for 30-s signals, with an overall accuracy of 95.67%, an approximately 2.5–3% improvement compared with that of previous works. Additionally, for 10-s signals, the proposed method achieves 92.33% classification accuracy, which is similar to or better than the performance of other methods using long-term signals (over 100 s).


Author(s):  
Povilas Piartli ◽  
Andrius Rapalis ◽  
Eugenijus Kaniusas ◽  
Lina Jankauskaite ◽  
Vaidotas Marozas

Author(s):  
Abdultaofeek Abayomi ◽  
◽  
Oludayo O. Olugbara ◽  
Delene Heukelman ◽  
◽  
...  

Emotion is a complex state of human mind influenced by body physiological changes and interdependent external events thus making an automatic recognition of emotional state a challenging task. A number of recognition methods have been applied in recent years to recognize human emotion. The motivation for this study is therefore to discover a combination of emotion features and recognition method that will produce the best result in building an efficient emotion recognizer in an affective system. We introduced a shifted tanh normalization scheme to realize the inverse Fisher transformation applied to the DEAP physiological dataset and consequently performed series of experiments using the Radial Basis Function Artificial Neural Networks (RBFANN). In our experiments, we have compared the performances of digital image based feature extraction techniques such as the Histogram of Oriented Gradient (HOG), Local Binary Pattern (LBP) and the Histogram of Images (HIM). These feature extraction techniques were utilized to extract discriminatory features from the multimodal DEAP dataset of physiological signals. Experimental results obtained indicate that the best recognition accuracy was achieved with the EEG modality data using the HIM features extraction technique and classification done along the dominance emotion dimension. The result is very remarkable when compared with existing results in the literature including deep learning studies that have utilized the DEAP corpus and also applicable to diverse fields of engineering studies.


2021 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
Andrea Bizzego ◽  
Giulio Gabrieli ◽  
Gianluca Esposito

While Deep Neural Networks (DNNs) and Transfer Learning (TL) have greatly contributed to several medical and clinical disciplines, the application to multivariate physiological datasets is still limited. Current examples mainly focus on one physiological signal and can only utilise applications that are customised for that specific measure, thus it limits the possibility of transferring the trained DNN to other domains. In this study, we composed a dataset (n=813) of six different types of physiological signals (Electrocardiogram, Electrodermal activity, Electromyogram, Photoplethysmogram, Respiration and Acceleration). Signals were collected from 232 subjects using four different acquisition devices. We used a DNN to classify the type of physiological signal and to demonstrate how the TL approach allows the exploitation of the efficiency of DNNs in other domains. After the DNN was trained to optimally classify the type of signal, the features that were automatically extracted by the DNN were used to classify the type of device used for the acquisition using a Support Vector Machine. The dataset, the code and the trained parameters of the DNN are made publicly available to encourage the adoption of DNN and TL in applications with multivariate physiological signals.


2011 ◽  
pp. 177-194 ◽  
Author(s):  
Markad V. Kamath ◽  
Adrian R. Upton ◽  
Jie Wu ◽  
Harjeet S. Bajaj ◽  
Skip Poehlman ◽  
...  

The artificial neural networks (ANNs) are regularly employed in EEG signal processing because of their effectiveness as pattern classifiers. In this chapter, four specific applications will be studied: On a day to day basis, ANNs can assist in identifying abnormal EEG activity in patients with neurological diseases such as epilepsy, Huntington’s disease, and Alzheimer’s disease. The ANNs can reduce the time taken for interpretation of physiological signals such as EEG, respiration, and ECG recorded during sleep. During an invasive surgical procedure, the ANNs can provide objective parameters derived from the EEG to help determine the depth of anesthesia. The ANNs have made significant contributions toward extracting embedded signals within the EEG which can be used to control external devices. This rapidly developing field, which is called brain-computer interface, has a large number of applications in empowering handicapped individuals to independently operate appliances, neuroprosthesis, or orthosis.


Author(s):  
Ya-Jing GUAN ◽  
Jyun-Rong ZHUANG ◽  
Hayato NAGAYOSHI ◽  
Hee-Hyol LEE ◽  
Eiichiro TANAKA

Sign in / Sign up

Export Citation Format

Share Document