Research on Power Control Method of Zero-voltage Soft-switching Wireless Charging System

Author(s):  
Yingqiu Wang ◽  
Shaoxiong Li ◽  
Rui He ◽  
Xiaoou Cao ◽  
Zexin Yang ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 196-203
Author(s):  
Jean‐Paul Ferrieux ◽  
Gatien Kwimang ◽  
Gérard Meunier ◽  
Benoit Sarrazin ◽  
Alexis Derbey ◽  
...  

Author(s):  
Nguyen Thi Diep ◽  
Nguyen Kien Trung ◽  
Tran Trong Minh

This paper presents a design of the wireless charging system for e-byke applications. The double-side LCC compensation circuit is used to achieve high efficiency and reduce the volt-ampere rating. A new constant current/voltage (CC/CV) charging control method at the transmitter side is proposed to avoid dual side wireless communication. This paper also presents a simple method of estimating both the coupling coefficient and load impedance only from the transmitter side. A wireless charging system of 2.5kW is built. Error in the CC/CV charging mode is 3.3% and 1.12%, respectively. System efficiency reaches 92.1% in CC charging mode.


2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Quanlei Zhang ◽  
Chunfang Wang ◽  
Lingyun Yang ◽  
Zhihao Guo

With the development of wireless power transfer (WPT), the wireless charging has become a research hotspot. This paper proposes a novel single-switch hybrid compensation topology, which can change the compensation network to realize the constant-current (CC) and constant-voltage (CV) output. The zero voltage switching (ZVS) margin can be designed to increase the stability of the system. In addition, the magnetic coupler adopts a composite shielding structure composed of ferrite, nanocrystalline, and aluminium foil. The composite shielding structure has a better shielding effect on magnetic flux leakage, and its weight is lighter. The composite shielding structure is expected to be used in the wireless charging system of electric vehicles (EVs). Finally, an experimental prototype is built to verify the theoretical analysis, and the maximum efficiency can reach 91.4%.


Author(s):  
Hyo-min Kim ◽  
Yong-joon Song ◽  
Yu-jin Sim ◽  
Gu-ho Jung ◽  
Dong-ho Cho

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1269 ◽  
Author(s):  
Guodong Chen ◽  
Chao Rao ◽  
Yue Sun ◽  
Zhenxin Chen ◽  
Chunsen Tang ◽  
...  

Aiming at the output control issues of a lithium ion battery wireless charging system, a primary side control method based on load characteristic identification is proposed. The primary side impedance is calculated by detecting the effective value of the primary side voltage and current, and the mapping relationship between the equivalent load and the primary side impedance is established based on the AC impedance model. Using this mapping relation, the output of the secondary side can be regulated indirectly by controlling the input voltage of the inverter. Compared with the traditional control methods, the proposed control method not only eliminates the communication requirement between the primary side and secondary side, but also simplifies the hardware circuit design, reduces the complexity of the control circuit and also reduces the volume and cost of the system. In the paper, the impedance characteristics of the lithium ion battery at constant current and constant voltage stage are analyzed. The principle of the primary side control method is expounded and the realization method is given. The feasibility of the proposed control method is verified by simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document