scholarly journals Constant-Current and Constant-Voltage Output for Single-Switch WPT System with Composite Shielding Structure

2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Quanlei Zhang ◽  
Chunfang Wang ◽  
Lingyun Yang ◽  
Zhihao Guo

With the development of wireless power transfer (WPT), the wireless charging has become a research hotspot. This paper proposes a novel single-switch hybrid compensation topology, which can change the compensation network to realize the constant-current (CC) and constant-voltage (CV) output. The zero voltage switching (ZVS) margin can be designed to increase the stability of the system. In addition, the magnetic coupler adopts a composite shielding structure composed of ferrite, nanocrystalline, and aluminium foil. The composite shielding structure has a better shielding effect on magnetic flux leakage, and its weight is lighter. The composite shielding structure is expected to be used in the wireless charging system of electric vehicles (EVs). Finally, an experimental prototype is built to verify the theoretical analysis, and the maximum efficiency can reach 91.4%.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7594
Author(s):  
Zhao-Wei Gong ◽  
Jin-Gang Li ◽  
Xiang-Qian Tong

This paper presents a series hybrid wireless charging system with an active adjustable circuitry offering constant current and constant voltage output characteristics. The series hybrid system consists of the inductor–capacitor–capacitor (LCC) and series-series (SS) networks are used for improving charging pad misalignment tolerance. An active switch is employed to provide an adjustable CC and CV output for different battery charging stages. To demonstrate the performance of the proposed method, a 310 W prototype was built. A systematic optimization in the parameter of the proposed topology to achieve relative constant output was analyzed within a certain range of the designed operating region. The experimental results indicate that the output current fluctuation is less than 5% with load variations, and the output voltage fluctuation is less than 5% with load varying from 19 to 70 Ω, as the pick-up pads misaligned within 50% of the pad outer diameter.


2020 ◽  
Vol 10 (2) ◽  
pp. 196-203
Author(s):  
Jean‐Paul Ferrieux ◽  
Gatien Kwimang ◽  
Gérard Meunier ◽  
Benoit Sarrazin ◽  
Alexis Derbey ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1323
Author(s):  
Sang-Hoon Hwang ◽  
Yafei Chen ◽  
Hailong Zhang ◽  
Kang-Yoon Lee ◽  
Dong-Hee Kim

This paper proposes a reconfigurable hybrid topology (RHT) for the constant current (CC)/constant voltage (CV) charging of electric vehicles. The proposed system combines the series–series and the inductor and double capacitors-series topologies. Two AC switches (ACSs) are utilized to change the CC and CV charging modes, without requiring an additional resonant network. A detailed analysis for designing the hybrid topology parameters is also presented; a three-kilowatt prototype was configured based on this analysis in order to validate the proposed system. The constructed prototype confirmed the stable mode changes, load fluctuations, CC/CV output characteristics and efficiency of the proposed system. The maximum efficiency of the proposed RHT was found to be 92.58%.


Author(s):  
Wangqiang Niu ◽  
Jiaojiao Liu ◽  
Zaixing Chen ◽  
Wei Gu

Compared with the traditional plug-in charging system, wireless power transfer (WPT) system has the characteristics of electrical and mechanical isolation. A wireless system is proposed suitable for battery charging under misalignment or range variation, and the constant current (CC) and constant voltage (CV) charging are realized by the estimation of coupling coefficient. Firstly, two different operating frequencies based on SS basic compensation structure are designed to realize CC output and CV output respectively. After circuit analysis, CC and CV output cannot be achieved when the position of the secondary coil changes. To solve this issue, when the coil is under misalignment or range variations, the required system parameters are measured, and the coupling coefficient in the charging process is estimated by using the transconductance amplitude equation. Then the corresponding input voltage or working frequency is calculated and fine-tuned. Therefore, the CC and CV charge of the battery can be realized under misalignment or range variation. Finally, experimental results are presented to verify the feasibility and correctness of this method.


2021 ◽  
Vol 11 (16) ◽  
pp. 7569
Author(s):  
Guangyao Li ◽  
Dong-Hee Kim

Compared with plugged-in chargers, wireless power transfer (WPT) systems for battery chargers have numerous advantages, e.g., safety, efficiency, and convenience. To satisfy the important wireless charging requirements of efficiency and safety of the battery, this paper proposes a constant current/voltage (CC/CV) charging compensation topology with near-communication based on receiving-side hybrid topology switching, which is unaffected by the dynamic loads. The proposed hybrid topology is systematically analyzed by using the M-mode, and the system parameters are designed to satisfy the constraints of zero phase angle (ZPA) and the specified CC output. In the CV mode, one shunt capacitor is employed to the compensation topology for the CV output and ZPA realization. Both the CC and CV modes are operated under the conditions of zero voltage switching (ZVS) for reducing the loss of the WPT systems. The proposed hybrid compensation topology is controlled by the receiving side and does not require real-time communication to avoid sophisticated control logic. Finally, a 1.1-kW experimental prototype charger based on DS-LCC and LCC-S topologies was established to verify the charging performance of the proposed WPT systems. The maximum efficiency of the proposed WPT charger was found to be approximately 91%. The experimental results were consistent with those of the theoretical analysis.


2019 ◽  
Vol 6 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Qassim S. Abdullahi ◽  
Rahil Joshi ◽  
Symon K. Podilchak ◽  
Sadeque R. Khan ◽  
Meixuan Chen ◽  
...  

Advances in material science and semiconductor technology have enabled a variety of inventions to be implemented in electronic systems and devices used in the medical, telecommunications, and consumer electronics sectors. In this paper, a wireless charging system is described as a wearable body heater that uses a chair as a transmitter (Tx). This system incorporates the widely accepted Qi wireless charging standard. Alignment conditions of a linear three-element coil arrangement and a 3 × 3 coil matrix array are investigated using voltage induced in a coil as a performance indicator. The efficiency obtained is demonstrated to be up to 80% for a voltage of over 6.5 Volts and a power transfer of over 5 Watts. Our results and proposed approach can be useful for many applications. This is because the wireless charging system described herein can help design seating areas for the elderly and disabled, commercial systems, consumer electronics, medical devices, electronic textiles (e-textiles), and other electronic systems and devices.


Sign in / Sign up

Export Citation Format

Share Document