scholarly journals Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1789 ◽  
Author(s):  
Apostolos Karalis ◽  
Dimitrios Zorbas ◽  
Christos Douligeris

IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption.


Author(s):  
Nga Dinh ◽  
Sangsoon Lim

This paper aims to develop several mathematical models to study medium access control (MAC) protocol in the IEEE 802.15.4 beacon-enabled mode with star topology. In particular, the MAC protocol which employs a slotted carrier-sense multiple access with collision avoidance (CSMA/CA) algorithm used in the contention access period (CAP) of a superframe is modelled. The analysis studies the effectiveness of the CSMA/CA algorithm and provides explicit mathematical expressions for power consumption, access delay, and data frame drop probability. The proposed models precisely follow CSMA/CA algorithm in MAC protocol of beacon-enabled mode and differ from those previously published in the literature as 1) they are derived based on data frame generation rate of end devices, 2) they provide a completed expression for frame access delay, and 3) lowpower states of end devices are considered for power efficiency evaluations. The paper shows how power consumption of end devices is improved on the balance with data frame delay. The validity of the proposed models is confirmed and complemented by extensive simulations.



Author(s):  
Nga Dinh ◽  
Sangsoon Lim

This paper aims to develop several mathematical models to study medium access control (MAC) protocol in the IEEE 802.15.4 beacon-enabled mode with star topology. In particular, the MAC protocol which employs a slotted carrier-sense multiple access with collision avoidance (CSMA/CA) algorithm used in the contention access period (CAP) of a superframe is modelled. The analysis studies the effectiveness of the CSMA/CA algorithm and provides explicit mathematical expressions for power consumption, access delay, and data frame drop probability. The proposed models precisely follow CSMA/CA algorithm in MAC protocol of beacon-enabled mode and differ from those previously published in the literature as 1) they are derived based on data frame generation rate of end devices, 2) they provide a completed expression for frame access delay, and 3) lowpower states of end devices are considered for power efficiency evaluations. The paper shows how power consumption of end devices is improved on the balance with data frame delay. The validity of the proposed models is confirmed and complemented by extensive simulations.



2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.



Wireless Body Area Network (WBAN) is an exclusively designed Wireless Sensor Networks that used in today’s health-care system. The central challenge in WBAN is to transfer the medical data with limited energy and with high reliability. The IEEE 802.15.4 MAC Protocol is a standard model used to consume less energy by providing low data rate. This paper aimed to present a novel protocol PD-MAC, an enhanced version of IEEE 802.15.4 to achieve the above goal. The main objective of this protocol is to transmit the packets according to their priorities. It also improves the retransmission and packet drop process by introducing an additional slot to define Starvation Index in the super-frame of IEEE 802.15.4. A node has to start its transmission when the timer is set to zero. A node has to sense the channel status before transmission begins. The data are transmitted according to their priorities only when it senses the free channel. However if the channel is not free then retransmission of packet will be carried out and in each retransmission process the starvation index increments the priority of the packet. When the packet priority raises to high then it transmits the packet by considering it as high emergency packet. For energy efficiency a max limit is define to retransmit a data packet. This protocol has been simulated using Castalia 3.2 environment and the result validate that our proposed protocol provides better service in terms of least Packet Delay and lowest Energy Consumption to its counterparts.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Omer Farooq ◽  
Thomas Kunz

Real-time multimedia applications require quality of service (QoS) provisioning in terms of bounds on delay and packet loss along with soft bandwidth guarantees. The shared nature of the wireless communication medium results in interference. Interference combined with the overheads, associated with a medium access control (MAC) protocol, and the implementation of a networking protocol stack limit the available bandwidth in IEEE 802.15.4-based networks and can result in congestion, even if the transmission rates of nodes are well below the maximum bandwidth supported by an underlying communication technology. Congestion degrades the performance of admitted real-time multimedia flow(s). Therefore, in this paper, we experimentally derive the IEEE 802.15.4 channel capacity using an unslotted CSMA-CA MAC protocol. We experimentally derive channel capacity for two cases, that is, when the CSMA-CA protocol is working without ACKs and when it is working with ACKs. Moreover, for both cases, we plot the relationship of offered data load with delay and packet loss rate. Simulation results demonstrate that the parameters that affect the choice of a CSMA-CA MAC layer protocol are end-to-end delay and packet loss requirements of a real-time multimedia flow, data load within the interference range of transmitters along the forwarding path, and length of the forwarding path.



Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Dongwan Kim ◽  
Jung-Hyok Kwon ◽  
Eui-Jik Kim

This paper presents a time-slotted channel hopping (TSCH) multiple slotframe scheduling (TMSS) protocol to ensure the timeliness of energy harvesting and data transmission for sensor devices with different transmission periods in Internet of Things (IoT) networks enabled with time-switching simultaneous wireless information and power transfer (TS-SWIPT). The TMSS uses a modified three-step 6P transaction to allocate power and data cells within the slotframe. The sensor device sets the slotframe length equal to the transmission period and estimates the number of power and data cells for allocation in the configured slotframe and requests cell allocation to the hybrid access point (HAP). Upon request from a sensor device, the HAP executes a cell-overlapping prevention (COP) algorithm to resolve the cell-overlapping problem and responds to the sensor device with a candidate cell list. Upon receiving the response from HAP, the sensor device determines its power and data cells by referring to the cell list. We conducted experimental simulations and compared the TMSS performance to that of the legacy TSCH medium access control (MAC) with a single slotframe and the harvest-then-transmit-based modified enhanced distributed coordination function (EDCF) MAC protocol (HE-MAC). The results showed that TMSS outperforms legacy TSCH MAC and HE-MAC in terms of delay, effective throughput and energy utilization.



Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6047
Author(s):  
Marcos A. Sordi ◽  
Ohara K. Rayel ◽  
Guilherme L. Moritz ◽  
João L. Rebelatto

The IEEE 802.15.4-2015 standard defines a number of Medium Access Control (MAC) layer protocols for low power wireless communications, which are desirable for energy-constrained Internet of Things (IoT) devices. Originally defined in the IEEE 802.15.4e amendment, the Time Slotted Channel Hopping (TSCH) has recently been attracting attention from the research community due to its reduced contention (time scheduling) and robustness against fading (channel hopping). However, it requires a certain level of synchronization between the nodes, which can increase the energy consumption. In this work, we implement the Guard Beacon (GB) strategy, aiming at reducing the guard time usually implemented to compensate for imperfect synchronization. Moreover, besides presenting a realistic energy consumption model for a Contiki Operating System-based TSCH network, we show through analytical and practical results that, without the proposed scheme, the power consumption can be more than 13% higher.



IoT ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 656-668
Author(s):  
Charalampos Orfanidis ◽  
Atis Elsts ◽  
Paul Pop ◽  
Xenofon Fafoutis

Time Slotted Channel Hopping (TSCH) is a medium access protocol defined in the IEEE 802.15.4 standard. It has proven to be one of the most reliable options when it comes to industrial applications. TSCH offers a degree of high flexibility and can be tailored to the requirements of specific applications. Several performance aspects of TSCH have been investigated so far, such as the energy consumption, reliability, scalability and many more. However, mobility in TSCH networks remains an aspect that has not been thoroughly explored. In this paper, we examine how TSCH performs under mobility situations. We define two mobile scenarios: one where autonomous agriculture vehicles move on a predefined trail, and a warehouse logistics scenario, where autonomous robots/vehicles and workers move randomly. We examine how different TSCH scheduling approaches perform on these mobility patterns and when a different number of nodes are operating. The results show that the current TSCH scheduling approaches are not able to handle mobile scenarios efficiently. Moreover, the results provide insights on how TSCH scheduling can be improved for mobile applications.



Author(s):  
Abdullah Sevin ◽  
Cuneyt Bayilmis

Nowadays, Wireless Body Area Networks (WBANs) are used in many fields. WBANs are described as small sensor nodes that communicate wirelessly and provide services to the personal area. Quality of Service (QoS) is an essential issue for WBANs due to the importance of human life. QoS problems can only be solved with a robust Medium Access Control (MAC) protocol in WBANs. To find a solution to this problem, developers performed many MAC protocols for WBANs. ISO/IEEE 11073 health informatics defines the standard of personal health information and purposes to provide interoperability between medical technologies. This paper presents a MAC protocol that provides ISO/IEEE 11073 communication standards with QoS support, bases on cross-layer architecture. We designed a slot assignment scheme, prioritization mechanism, admission control mechanism to provide QoS. The performance evaluation of the proposed MAC protocol is compared with IEEE 802.15.4 and IEEE 802.15.6 protocols by considering end-to-end delay, packet loss ratio, and throughput parameters, and it has achieved out performance. It is observed that the proposed protocol doesn't exceed 45 ms delay, reached 81% traffic load, and a maximum error rate of 0.162%.



Sign in / Sign up

Export Citation Format

Share Document