A distributed MAC protocol for full duplex radio

Author(s):  
Sanjay Goyal ◽  
Pei Liu ◽  
Ozgur Gurbuz ◽  
Elza Erkip ◽  
Shivendra Panwar
Author(s):  
Louiza Bouallouche Medjkoune ◽  
Chafik Akmouche ◽  
Mohand Yazid ◽  
Mohand Moktefi
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3283 ◽  
Author(s):  
Al-Absi ◽  
Al-Absi ◽  
Jae Lee

Future safety applications require the timely delivery of messages between vehicles. The 802.11p has been standardized as the standard Medium Access Control (MAC) protocol for vehicular communication. The 802.11p uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) as MAC. CSMA/CA induces unbounded channel access delay. As a result, it induces high collision. To reduce collision, distributed MAC is required for channel allocation. Many existing approaches have adopted Time Division Multiple Access (TDMA) based MAC design for channel allocation. However, these models are not efficient at utilizing bandwidth. Cognitive radio technique is been adopted by various existing approach for channel allocation in shared channel network to maximize system throughput. However, it induces MAC overhead, and channel allocation on a shared channel network is considered to be an NP-hard problem. This work addresses the above issues. Here we present distributed MAC design PECA (Performance Enriching Channel Allocation) for channel allocation in a shared channel network. The PECA model maximizes the system throughput and reduces the collision, which is experimentally proven. Experiments are conducted to evaluate the performance in terms of throughput, collision and successful packet transmission considering a highly congested vehicular ad-hoc network. Experiments are carried out to show the adaptiveness of proposed MAC design considering different environments such City, Highway and Rural (CHR).


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Teddy Febrianto ◽  
Jiancao Hou ◽  
Mohammad Shikh-Bahaei

In asynchronous cognitive networks (CNs), where there is no synchronization between primary users (PUs) and secondary users (SUs), spectrum sensing becomes a challenging task. By combining cooperative spectrum sensing and full-duplex (FD) communications in asynchronous CNs, this paper demonstrates improvements in terms of the average throughput of both PUs and SUs for particular transmission schemes. The average throughputs are derived for SUs and PUs under different FD schemes, levels of residual self-interference, and number of cooperative SUs. In particular, we consider two types of FD schemes, namely, FD transmit-sense-reception (FDr) and FD transmit-sense (FDs). FDr allows SUs to transmit and receive data simultaneously, whereas, in FDs, the SUs continuously sense the channel during the transmission time. This paper shows the respective trade-offs and obtains the optimal scheme based on cooperative FD spectrum sensing. In addition, SUs’ average throughput is analyzed under different primary channel utilization and multichannel sensing schemes. Finally, new FD MAC protocol design is proposed and analyzed for FD cooperative spectrum sensing. We found optimum parameters for our proposed MAC protocol to achieve higher average throughput in certain applications.


Sign in / Sign up

Export Citation Format

Share Document