Drivocopter: A concept Hybrid Aerial/Ground vehicle for long-endurance mobility

Author(s):  
Arash Kalantari ◽  
Thomas Touma ◽  
Leon Kim ◽  
Rianna Jitosho ◽  
Kyle Strickland ◽  
...  
Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 404
Author(s):  
Ching-Wei Chang ◽  
Li-Yu Lo ◽  
Hiu Ching Cheung ◽  
Yurong Feng ◽  
An-Shik Yang ◽  
...  

This work aimed to develop an autonomous system for unmanned aerial vehicles (UAVs) to land on moving platforms such as an automobile or a marine vessel, providing a promising solution for a long-endurance flight operation, a large mission coverage range, and a convenient recharging ground station. Unlike most state-of-the-art UAV landing frameworks that rely on UAV onboard computers and sensors, the proposed system fully depends on the computation unit situated on the ground vehicle/marine vessel to serve as a landing guidance system. Such a novel configuration can therefore lighten the burden of the UAV, and the computation power of the ground vehicle/marine vessel can be enhanced. In particular, we exploit a sensor fusion-based algorithm for the guidance system to perform UAV localization, whilst a control method based upon trajectory optimization is integrated. Indoor and outdoor experiments are conducted, and the results show that precise autonomous landing on a 43 cm × 43 cm platform can be performed.


Author(s):  
Ching-Wei Chang ◽  
Li-Yu Lo ◽  
Hiu Ching Cheung ◽  
Yurong Feng ◽  
An-Shik Yang ◽  
...  

This work aims to develop an autonomous system for the unmanned aerial vehicle (UAV) to land on a moving platform such as the automobile or marine vessels, providing a promising solution for a long-endurance flight operation, a large mission coverage range, and a convenient recharging ground station. Different from most state-of-the-art UAV landing frameworks which rely on UAV’s onboard computers and sensors, the proposed system fully depends on the computation unit situated on the ground vehicle/marine vessel to serve as a landing guidance system. Such novel configuration can therefore lighten the burden of the UAV and computation power on the ground vehicle/marine vessel could be enhanced. In particular, we exploit a sensor fusion-based algorithm for the guidance system to perform UAV localization, whilst a control method based upon trajectory optimization is integrated. Indoor and outdoor experiments are conducted and the result shows that a precise autonomous landing on a 43 X 43 cm platform could be performed.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 241
Author(s):  
Zhenhui Fan ◽  
Pengxiang Yang ◽  
Chunbo Mei ◽  
Qiju Zhu ◽  
Xiao Luo

The attitude estimation system based on vision/inertial fusion is of vital importance and great urgency for unmanned ground vehicles (UGVs) in GNSS-challenged/denied environments. This paper aims to develop a fast vision/inertial fusion system to estimate attitude; which can provide attitude estimation for UGVs during long endurance. The core idea in this paper is to integrate the attitude estimated by continuous vision with the inertial pre-integration results based on optimization. Considering that the time-consuming nature of the classical methods comes from the optimization and maintenance of 3D feature points in the back-end optimization thread, the continuous vision section calculates the attitude by image matching without reconstructing the environment. To tackle the cumulative error of the continuous vision and inertial pre-integration, the prior attitude information is introduced for correction, which is measured and labeled by an off-line fusion of multi-sensors. Experiments with the open-source datasets and in road environments have been carried out, and the results show that the average attitude errors are 1.11° and 1.96°, respectively. The road test results demonstrate that the processing time per frame is 24 ms, which shows that the proposed system improves the computational efficiency.


2007 ◽  
Author(s):  
Cheng Li Wei ◽  
Ang Cher Wee ◽  
Chan Wai Herng ◽  
Ying Meng Fai

ROBOT ◽  
2013 ◽  
Vol 35 (6) ◽  
pp. 657 ◽  
Author(s):  
Taoyi ZHANG ◽  
Tianmiao WANG ◽  
Yao WU ◽  
Qiteng ZHAO

Sign in / Sign up

Export Citation Format

Share Document