Road traffic state estimation framework based on hybrid assisted global positioning system and uplink time difference of arrival data collection methods

Author(s):  
Ayalew Belay Habtie ◽  
Ajith Abraham ◽  
Dida Midekso
2007 ◽  
Vol 34 (5) ◽  
pp. 678-681 ◽  
Author(s):  
Bruce G Wilson ◽  
Betsy J Agar ◽  
Brian W Baetz ◽  
Anne Winning

Studies of municipal solid waste collection systems have traditionally relied upon information collected from time and motion studies or truck logs. This type of data collection has been expensive, the volume of data collected has been small, and the reliability of the data has been suspect. A recent project in Hamilton, Ontario, monitored five municipal solid waste collection vehicles using a global positioning system (GPS) as an alternative to traditional data collection methods. The study found that the GPS data are reliable, accurate, and suitable for a range of solid waste planning purposes. Data collection was automatic and relatively inexpensive. Analysis of the data identified significant differences in the performance of the vehicles on different routes. Data collection using GPS is an improvement over traditional data collection methods, but the large volume of data generated will provide challenges for waste managers. Key words: data collection, global positioning system, municipal solid waste, refuse collection, automatic vehicle location.


Author(s):  
Violet Bassey Eneyo

This paper examines the distribution of hospitality services in Uyo Urban, Nigeria. GIS method was the primary tool used for data collection. A global positioning system (GPS) Garmin 60 model was used in tracking the location of 102 hospitality services in the study area. One hypothesis was stated and tested using the nearest neighbour analysis. The finding shows evidence of clustering of the various hospitality services. The tested hypothesis further indicated that hospitality services clustered in areas that guarantee a sustainable level of patronage to maximize profit. Thus, the hospitality services clustered in selected streets in the metropolis while limited numbers were found outside the city’s central area.


2000 ◽  
Vol 1710 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Sastry Chundury ◽  
Brian Wolshon

It has been recognized that CORSIM (and its constituent program, NETSIM) is one of the most widely used and effective computer programs for the simulation of traffic behavior on urban transportation networks. Its popularity is due in large part to the high level of detail incorporated into its modeling routines. However, the car-following models, used for the simulation of driver behavior in the program, have not been formally calibrated or validated. Since the model has performed well in a wide range of applications for so many years, it has always been assumed to have an implied validity. This study evaluated the NETSIM car-following models by comparing their results with field data. Car-following field data were collected using a new data collection system that incorporates new Global Positioning System and geographic information system technologies to improve the accuracy, ease, speed, and cost-effectiveness of car-following data collection activities. First, vehicle position and speed characteristics were collected under field conditions. Then simulated speeds and distances were based on identical lead vehicle actions using NETSIM car-following equations. Comparisons of simulated and field data were completed using both graphical and statistical methods. Although some differences were evident in the graphical comparisons, the graphs overall indicated a reasonable match between the field and simulated vehicle movements. Three statistical tests, including a goodness-of-fit test, appear to support these subjective conclusions. However, it was also found that definitive statistical conclusions were difficult to draw since no single test was able to compare the sets of speed and distance information on a truly impartial basis.


Author(s):  
Prabha Ramasamy ◽  
Mohan Kabadi

Navigational service is one of the most essential dependency towards any transport system and at present, there are various revolutionary approaches that has contributed towards its improvement. This paper has reviewed the global positioning system (GPS) and computer vision based navigational system and found that there is a large gap between the actual demand of navigation and what currently exists. Therefore, the proposed study discusses about a novel framework of an autonomous navigation system that uses GPS as well as computer vision considering the case study of futuristic road traffic system. An analytical model is built up where the geo-referenced data from GPS is integrated with the signals captured from the visual sensors are considered to implement this concept. The simulated outcome of the study shows that proposed study offers enhanced accuracy as well as faster processing in contrast to existing approaches.


Author(s):  
Jean Wolf ◽  
Shauna Hallmark ◽  
Marcelo Oliveira ◽  
Randall Guensler ◽  
Wayne Sarasua

The number of injuries is increasing on a regular basis, as are concerns about driver and passenger safety. Countries that have minimized road traffic risk effectively have adopted a "systems approach" to road safety. The issue of road safety is centered on speed. There is a clear connection between speed and the number of accidents as well as the seriousness of the crash's consequences. This framework proposes a speed limit camera monitoring/tracking system that uses the Global Positioning System (GPS) and cloud computing with the Software-as-a-Service (SaaS) module to provide valuable information about roads in order to improve safety. It also alerts the driver about signs, breaks, and which roads it connects to in the future.


Sign in / Sign up

Export Citation Format

Share Document